Establishment of a benign meningioma cell line by hTERT-mediated immortalization. 2005

Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
Institute of Neuropathology, University Hospital, Münster, Germany.

Meningioma represents the most common intracranial tumor, but well-characterized cell lines derived from benign meningiomas are not available. A major reason for the lack of benign tumor cell lines is senescence of nonmalignant cells in vitro, while malignant cells are often immortal. We have developed a meningioma cell line by retrovirally transducing primary cells derived from a human WHO grade I meningothelial meningioma with the human telomerase reverse transcriptase (hTERT) gene, which enables bypassing cellular senescence. Five clones have been cultured for more than 21 months so far, while corresponding nontransfected cells ceased proliferation within 3 months. Quantitative RT-PCR and a telomeric repeat amplification protocol (TRAP) assay revealed high hTERT mRNA levels and high telomerase activity in all transduced populations, while nontransduced cells were negative. The average telomere size of transduced cells was considerably longer than that of parental cells and the biopsy specimen. One clone, designated Ben-Men-1, was characterized in more detail, and exhibited typical cytological, immunocytochemical, ultrastructural and genetical features of meningioma, including whorl formation, expression of epithelial membrane antigen, desmosomes and interdigitating cell processes, as well as -22q. Following subdural transplantation into nude mice, tumor tissue with typical histological features of meningothelial meningioma was found. We conclude that Ben-Men-1 represents an immortalized yet differentiated cell line useful for biological and therapeutical studies on meningioma.

UI MeSH Term Description Entries
D008579 Meningioma A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7) Benign Meningioma,Malignant Meningioma,Meningiomas, Multiple,Meningiomatosis,Angioblastic Meningioma,Angiomatous Meningioma,Cerebral Convexity Meningioma,Clear Cell Meningioma,Fibrous Meningioma,Hemangioblastic Meningioma,Hemangiopericytic Meningioma,Intracranial Meningioma,Intraorbital Meningioma,Intraventricular Meningioma,Meningotheliomatous Meningioma,Microcystic Meningioma,Olfactory Groove Meningioma,Papillary Meningioma,Parasagittal Meningioma,Posterior Fossa Meningioma,Psammomatous Meningioma,Secretory Meningioma,Sphenoid Wing Meningioma,Spinal Meningioma,Transitional Meningioma,Xanthomatous Meningioma,Angioblastic Meningiomas,Angiomatous Meningiomas,Benign Meningiomas,Cerebral Convexity Meningiomas,Clear Cell Meningiomas,Convexity Meningioma, Cerebral,Convexity Meningiomas, Cerebral,Fibrous Meningiomas,Groove Meningiomas, Olfactory,Hemangioblastic Meningiomas,Hemangiopericytic Meningiomas,Intracranial Meningiomas,Intraorbital Meningiomas,Intraventricular Meningiomas,Malignant Meningiomas,Meningioma, Angioblastic,Meningioma, Angiomatous,Meningioma, Benign,Meningioma, Cerebral Convexity,Meningioma, Clear Cell,Meningioma, Fibrous,Meningioma, Hemangioblastic,Meningioma, Hemangiopericytic,Meningioma, Intracranial,Meningioma, Intraorbital,Meningioma, Intraventricular,Meningioma, Malignant,Meningioma, Meningotheliomatous,Meningioma, Microcystic,Meningioma, Multiple,Meningioma, Olfactory Groove,Meningioma, Papillary,Meningioma, Parasagittal,Meningioma, Posterior Fossa,Meningioma, Psammomatous,Meningioma, Secretory,Meningioma, Sphenoid Wing,Meningioma, Spinal,Meningioma, Transitional,Meningioma, Xanthomatous,Meningiomas,Meningiomas, Angioblastic,Meningiomas, Angiomatous,Meningiomas, Benign,Meningiomas, Cerebral Convexity,Meningiomas, Clear Cell,Meningiomas, Fibrous,Meningiomas, Hemangioblastic,Meningiomas, Hemangiopericytic,Meningiomas, Intracranial,Meningiomas, Intraorbital,Meningiomas, Intraventricular,Meningiomas, Malignant,Meningiomas, Meningotheliomatous,Meningiomas, Microcystic,Meningiomas, Olfactory Groove,Meningiomas, Papillary,Meningiomas, Parasagittal,Meningiomas, Posterior Fossa,Meningiomas, Psammomatous,Meningiomas, Secretory,Meningiomas, Sphenoid Wing,Meningiomas, Spinal,Meningiomas, Transitional,Meningiomas, Xanthomatous,Meningiomatoses,Meningotheliomatous Meningiomas,Microcystic Meningiomas,Multiple Meningioma,Multiple Meningiomas,Olfactory Groove Meningiomas,Papillary Meningiomas,Parasagittal Meningiomas,Posterior Fossa Meningiomas,Psammomatous Meningiomas,Secretory Meningiomas,Sphenoid Wing Meningiomas,Spinal Meningiomas,Transitional Meningiomas,Wing Meningioma, Sphenoid,Wing Meningiomas, Sphenoid,Xanthomatous Meningiomas
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D019098 Telomerase An essential ribonucleoprotein reverse transcriptase that adds telomeric DNA to the ends of eukaryotic CHROMOSOMES. Telomerase Catalytic Subunit,Telomerase Reverse Transcriptase,Telomerase Reverse Transcriptase Catalytic Subunit,Catalytic Subunit, Telomerase,Reverse Transcriptase, Telomerase,Subunit, Telomerase Catalytic,Transcriptase, Telomerase Reverse
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse

Related Publications

Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
April 2021, Pituitary,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
December 2003, World journal of gastroenterology,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
February 2019, Cytotechnology,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
August 2007, Animal reproduction science,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
April 2021, International journal of molecular sciences,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
September 2023, International journal of molecular sciences,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
July 2003, Zhonghua yi xue za zhi,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
January 2022, Frontiers in veterinary science,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
February 2004, Transplantation,
Sylvia Püttmann, and Volker Senner, and Stephan Braune, and Beate Hillmann, and Rita Exeler, and Christian H Rickert, and Werner Paulus
May 2004, Transplantation,
Copied contents to your clipboard!