Comparative cellular pharmacology of daunorubicin and idarubicin in human multidrug-resistant leukemia cells. 1992

E Berman, and M McBride
Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10021.

We examined the effect of daunorubicin (DNR), the new anthracycline derivative idarubicin (IDR), and verapamil on two leukemia cell lines that displayed the multidrug resistant (MDR) phenotype and used laser flow cytometry to quantitate intracellular anthracycline content. The vinblastine-resistant human lymphoblastic leukemia cell line CEM-VBL demonstrated minimal DNR uptake; simultaneous incubation with verapamil and DNR increased intracellular DNR uptake fourfold. IDR uptake was 10 times more rapid in these cells and simultaneous incubation with IDR and verapamil resulted in only a 1.2-fold increase of intracellular IDR. Similar results were observed in the vincristine-resistant human myeloid leukemia cell line HL-60/RV+. Intracellular retention of DNR and IDR was also measured in each cell line. In CEM-BVL cells, 38% of the original DNR concentration remained after a 2-hour resuspension in fresh medium compared with 71% of the original IDR concentration. In HL-60/RV+ cells, 36% of the DNR concentration remained compared with 51% of the IDR concentration. After incubation of CEM-VBL and HL-60/RV+ cells with DNR for 1 hour followed by resuspension in fresh medium plus verapamil, intracellular DNA retention increased 5- and 5.2-fold, respectively. However, incubation of these cells for 1 hour with IDR followed by resuspension in fresh medium plus verapamil resulted in only a 1.6- and 2.4-fold increase in intracellular IDR retention. Lastly, clonogenic experiments were performed to correlate intracellular anthracycline content with cytotoxicity. DNR alone had a minimal effect on the clonogenic growth of CEM-VBL cells, whereas the combination of DNR plus verapamil resulted in approximately 80% growth inhibition. However, incubation of these cells with IDR alone resulted in greater than 95% growth inhibition. These results suggest that IDR may be more effective than DNR in leukemia cells that display the MDR phenotype.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014700 Verapamil A calcium channel blocker that is a class IV anti-arrhythmia agent. Iproveratril,Calan,Cordilox,Dexverapamil,Falicard,Finoptin,Isoptin,Isoptine,Izoptin,Lekoptin,Verapamil Hydrochloride,Hydrochloride, Verapamil
D015255 Idarubicin An orally administered anthracycline antineoplastic. The compound has shown activity against BREAST NEOPLASMS; LYMPHOMA; and LEUKEMIA. 4-Demethoxydaunorubicin,4-Desmethoxydaunorubicin,IMI-30,Idarubicin Hydrochloride,NSC-256439,4 Demethoxydaunorubicin,4 Desmethoxydaunorubicin,Hydrochloride, Idarubicin,IMI 30,IMI30,NSC 256439,NSC256439
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D054198 Precursor Cell Lymphoblastic Leukemia-Lymphoma A neoplasm characterized by abnormalities of the lymphoid cell precursors leading to excessive lymphoblasts in the marrow and other organs. It is the most common cancer in children and accounts for the vast majority of all childhood leukemias. Leukemia, Lymphoblastic,Leukemia, Lymphoid, Acute,Lymphoblastic Leukemia,Lymphoblastic Lymphoma,Lymphocytic Leukemia, Acute,Lymphoma, Lymphoblastic,ALL, Childhood,Acute Lymphoid Leukemia,Leukemia, Acute Lymphoblastic,Leukemia, Lymphoblastic, Acute,Leukemia, Lymphoblastic, Acute, L1,Leukemia, Lymphoblastic, Acute, L2,Leukemia, Lymphoblastic, Acute, Philadelphia-Positive,Leukemia, Lymphocytic, Acute,Leukemia, Lymphocytic, Acute, L1,Leukemia, Lymphocytic, Acute, L2,Lymphoblastic Leukemia, Acute,Lymphoblastic Leukemia, Acute, Adult,Lymphoblastic Leukemia, Acute, Childhood,Lymphoblastic Leukemia, Acute, L1,Lymphoblastic Leukemia, Acute, L2,Lymphocytic Leukemia, L1,Lymphocytic Leukemia, L2,Acute Lymphoblastic Leukemia,Acute Lymphocytic Leukemia,Childhood ALL,L1 Lymphocytic Leukemia,L2 Lymphocytic Leukemia,Leukemia, Acute Lymphocytic,Leukemia, Acute Lymphoid,Leukemia, L1 Lymphocytic,Leukemia, L2 Lymphocytic,Lymphoid Leukemia, Acute,Precursor Cell Lymphoblastic Leukemia Lymphoma

Related Publications

E Berman, and M McBride
January 1992, Hematological oncology,
E Berman, and M McBride
July 1996, International journal of cancer,
Copied contents to your clipboard!