The crystallization of Hydroxyapatite in the presence of sodium alginate. 2005

P Malkaj, and E Pierri, and E Dalas
Department of Chemistry, University of Patras, GR-26504, Patras, Greece.

The effect of sodium alginate on the crystal growth of hydroxyapatite (HAP) was investigated at sustained supersaturation by the constant composition technique. Sodium alginate was found to inhibit HAP crystal growth at low concentrations and reduced the crystal growth rates by 42-86% for inhibitor concentrations of 2.1x10(-7)-12.6x10(-7) mol/l. The inhibition effect on the crystal growth rate may be explained possibly through adsorption onto the active growth sites. A detailed kinetics analysis suggested a Langmuir-type adsorption of the alginate on HAP surface and a value of 1.63x10(7) l/mol was obtained for the affinity constant of sodium alginate for the surface of HAP. The apparent order for the crystallization reaction was determined to be approximately 2, thus suggesting a surface diffusion controlled spiral growth mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006603 Hexuronic Acids Term used to designate tetrahydroxy aldehydic acids obtained by oxidation of hexose sugars, i.e. glucuronic acid, galacturonic acid, etc. Historically, the name hexuronic acid was originally given to ascorbic acid. Hexouronic Acids,Acids, Hexouronic,Acids, Hexuronic
D000464 Alginates Salts and esters of ALGINIC ACID that are used as HYDROGELS; DENTAL IMPRESSION MATERIALS, and as absorbent materials for surgical dressings (BANDAGES, HYDROCOLLOID). They are also used to manufacture MICROSPHERES and NANOPARTICLES for DIAGNOSTIC REAGENT KITS and DRUG DELIVERY SYSTEMS. Alginate,Alginic Acid, Barium Salt,Alginic Acid, Calcium Salt,Alginic Acid, Copper Salt,Alginic Acid, Potassium Salt,Alginic Acid, Sodium Salt,Alloid G,Barium Alginate,Calcium Alginate,Calginat,Copper Alginate,Kalrostat,Kalrostat 2,Kaltostat,Potassium Alginate,Sodium Alginate,Sodium Calcium Alginate,Vocoloid,Xantalgin,poly(Mannuronic Acid), Sodium Salt,Alginate, Barium,Alginate, Calcium,Alginate, Copper,Alginate, Potassium,Alginate, Sodium,Alginate, Sodium Calcium,Calcium Alginate, Sodium
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D017886 Durapatite The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis. Calcium Hydroxyapatite,Hydroxyapatite,Hydroxylapatite,Alveograf,Calcitite,Interpore-200,Interpore-500,Osprovit,Ossein-Hydroxyapatite Compound,Ossopan,Osteogen,Periograf,Hydroxyapatite, Calcium,Interpore 200,Interpore 500,Interpore200,Interpore500,Ossein Hydroxyapatite Compound

Related Publications

P Malkaj, and E Pierri, and E Dalas
November 2000, Journal of colloid and interface science,
P Malkaj, and E Pierri, and E Dalas
February 1997, Journal of colloid and interface science,
P Malkaj, and E Pierri, and E Dalas
June 2015, Materials science & engineering. C, Materials for biological applications,
P Malkaj, and E Pierri, and E Dalas
July 2023, Materials (Basel, Switzerland),
P Malkaj, and E Pierri, and E Dalas
December 2023, Journal of the mechanical behavior of biomedical materials,
P Malkaj, and E Pierri, and E Dalas
August 2009, Journal of food science,
P Malkaj, and E Pierri, and E Dalas
January 2018, Journal of applied biomaterials & functional materials,
P Malkaj, and E Pierri, and E Dalas
April 1970, Bollettino chimico farmaceutico,
Copied contents to your clipboard!