Mechanisms of coronary vasodilatation produced by ATP in guinea-pig isolated perfused heart. 1992

I P Brown, and C I Thompson, and F L Belloni
Department of Physiology, New York Medical College, Valhalla 10595.

1. Isolated hearts of guinea-pigs were perfused in vitro with a physiological salt solution via a retrograde aortic cannulation (Langendorff preparation) at constant perfusion pressure. Bolus intra-arterial injections of various vasodilator drugs were made and the coronary flow responses were measured with an electromagnetic flow probe placed in the arterial inflow circuit. Inhibitory drugs were infused intra-arterially. 2. Nitro-L-arginine (NLA; 500 microM), an NO synthesis inhibitor, decreased coronary baseline flow by 16 +/- 0.8%, converted acetylcholine-induced coronary vasodilatation to vasoconstriction and had no effect on coronary flow responses to adenosine or papaverine. Sodium nitroprusside-induced responses were enhanced during NLA infusion by 46 +/- 11%. 3. Adenosine 5'-triphosphate (ATP) increased coronary flow but coronary flow responses to ATP were not altered by infusion of NLA. 4. ATP-induced coronary dilatation was not significantly attenuated by infusion of the adenosine receptor antagonist XAC, (xanthine amine congener; 2 microM), whereas XAC decreased coronary flow responses to adenosine by 75% +/- 5%. 5. ATP-induced coronary flow responses were reduced by only 31 +/- 4% during indomethacin infusion (2.8 microM) whereas indomethacin completely eliminated the initial vasoconstriction phase and greatly attenuated the peak flow and duration of the later vasodilatation phase seen in response to arachidonic acid (0.75 nmol). Indomethacin had no effect on vasodilatations produced by adenosine or prostaglandin I2. 6. These results indicate that ATP-induced coronary dilatation in the isolated, perfused heart of the guinea-pig is not dependent upon NO production or upon degradation of ATP to adenosine. The coronary dilator action of ATP may be partially dependent (approximately 30%) upon the production of vasodilator prostaglandins.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate

Related Publications

I P Brown, and C I Thompson, and F L Belloni
October 1991, The Journal of physiology,
I P Brown, and C I Thompson, and F L Belloni
January 1974, Blood vessels,
I P Brown, and C I Thompson, and F L Belloni
June 1999, Journal of cardiovascular pharmacology,
I P Brown, and C I Thompson, and F L Belloni
December 2003, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
I P Brown, and C I Thompson, and F L Belloni
January 1996, Journal of vascular research,
I P Brown, and C I Thompson, and F L Belloni
October 1995, The American journal of physiology,
I P Brown, and C I Thompson, and F L Belloni
May 1972, The Journal of physiology,
I P Brown, and C I Thompson, and F L Belloni
January 1995, Basic research in cardiology,
Copied contents to your clipboard!