Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. 1992

H Tanabe, and J Goldstein, and M Yang, and M Inouye
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey at Rutgers, Piscataway 08854-5635.

The major cold shock protein of Escherichia coli, CS7.4, is produced at a level of 13% of total protein synthesis upon a temperature shift from 37 to 10 degrees C. The transcription of its gene (cspA) was found to be tightly regulated and induced only at low temperature. In addition, the cspA mRNA was extremely unstable at 37 degrees C, so that CS7.4 production was hardly detected when the culture temperature was shifted from 15 degrees C to 37 degrees C. The transcription initiation site (+1) was identified. In vivo footprinting demonstrated that the region from bases -35 to -73 was protected from chemical modification, and gel mobility shift analysis showed that a cold-shocked cell extract contained a factor(s) specifically bound to the fragment containing the sequence between bases -63 and -92. This factor was synthesized de novo only at low temperature, and its synthesis was inhibited by chloramphenicol. Possible functions of this factor are discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

H Tanabe, and J Goldstein, and M Yang, and M Inouye
September 1993, Journal of bacteriology,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
May 1994, Proceedings of the National Academy of Sciences of the United States of America,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
November 1997, Journal of bacteriology,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
January 1994, Biochimie,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
January 1997, The Journal of biological chemistry,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
April 1996, Applied and environmental microbiology,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
March 1999, The EMBO journal,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
October 1999, Journal of bacteriology,
H Tanabe, and J Goldstein, and M Yang, and M Inouye
January 1996, Molecular microbiology,
Copied contents to your clipboard!