Thymidine and 3'-azido-3'-deoxythymidine metabolism in human peripheral blood lymphocytes and monocyte-derived macrophages. A study of both anabolic and catabolic pathways. 1992

E S Arnér, and A Valentin, and S Eriksson
Medical Nobel Institute, Department of Biochemistry I, Karolinska Institute, Stockholm, Sweden.

3'-Azido-3'-deoxythymidine (AZT) is HIV-inhibitory in human macrophages, which is surprising in view of the low AZT phosphorylation reported in macrophage extracts. To elucidate the mechanism of AZT activation, we studied AZT anabolism as well as catabolism in human lymphocytes and macrophages, and compared it to that of thymidine. Thymidine kinase (TK)-specific activity in mitogen-stimulated lymphocytes was 15 times higher than in macrophages. However, the TK activity per cell was only 1.3 times higher, because of the large macrophage cell volume. Total cellular TK activity, but not specific activity, matched the level of intracellular AZT anabolism. The substrate specificity of TK in macrophages strongly suggests that mitochondrial TK2 was the enzyme phosphorylating thymidine and AZT in these cells, whereas it was cytosolic TK1 in stimulated lymphocytes. In vivo thymidine catabolism was extensive, forming thymine and dihydrothymine. In macrophages more than 95% of the added thymidine (0.5 microM) was degraded within 60 min. AZT, in contrast, was not catabolized, which explains the high AZT nucleotide accumulation, a process opposed only by AZTMP excretion. The lack of catabolism together with phosphorylation by TK2 clarifies how AZT can inhibit human immunodeficiency virus in macrophages. The fact that TK2 and not TK1 phosphorylates AZT in macrophages should have important implications for combination chemotherapy.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

E S Arnér, and A Valentin, and S Eriksson
December 1993, Biochemical and biophysical research communications,
E S Arnér, and A Valentin, and S Eriksson
April 1989, European journal of clinical investigation,
E S Arnér, and A Valentin, and S Eriksson
May 1989, Proceedings of the National Academy of Sciences of the United States of America,
E S Arnér, and A Valentin, and S Eriksson
January 1993, Oncology research,
E S Arnér, and A Valentin, and S Eriksson
July 1994, Biochemical pharmacology,
E S Arnér, and A Valentin, and S Eriksson
April 1999, American journal of hematology,
E S Arnér, and A Valentin, and S Eriksson
January 1991, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!