Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. 1992

B C Hoopes, and J F LeBlanc, and D K Hawley
Institute of Molecular Biology, University of Oregon, Eugene 97403.

The eukaryotic transcription factor TFIID recognizes and binds a promoter sequence element called the TATA box. We have analyzed the interaction of yeast TFIID with the consensus TATA box sequence of the adenovirus major late promoter. To facilitate this detailed characterization, we developed a method for obtaining quantitative information from a gel retardation (bandshift) assay, allowing measurement of the rate and extent of TFIID-TATA box complex formation. Using this assay and DNase I protection assays, we determined that the association rate constant for TFIID binding to the major late promoter was too low to be consistent with a simple diffusion-limited association, suggesting that the binding proceeds by a multi-step pathway. Furthermore, we found that the slow rate of TFIID binding reported by other research groups was not the consequence of a rate-limiting conformational change, as has been previously suggested. Instead, we observed that the formation of a stable TFIID-TATA box complex was relatively rapid (complete in less than 1 min) at saturating concentrations of TFIID. We have proposed a two-step pathway consistent with the observed kinetics and have considered the possible contributions of each step to the overall rate of TFIID binding. This study lays the groundwork for a systematic characterization of the interaction of TFIID with additional TATA box sequences, including an experimental test of the possibility that different steps in the binding reaction are rate-limiting for different promoters.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D016172 DNA Fingerprinting A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population. DNA Fingerprints,DNA Profiling,DNA Typing,Genetic Fingerprinting,DNA Fingerprint,DNA Fingerprintings,DNA Profilings,DNA Typings,Fingerprint, DNA,Fingerprinting, DNA,Fingerprinting, Genetic,Fingerprintings, DNA,Fingerprintings, Genetic,Fingerprints, DNA,Genetic Fingerprintings,Profiling, DNA,Typing, DNA,Typings, DNA
D016385 TATA Box A conserved A-T rich sequence which is contained in promoters for RNA polymerase II. The segment is seven base pairs long and the nucleotides most commonly found are TATAAAA. Hogness Box,Box, Hogness,Box, TATA
D035362 Transcription Factor TFIID The major sequence-specific DNA-binding component involved in the activation of transcription of RNA POLYMERASE II. It was originally described as a complex of TATA-BOX BINDING PROTEIN and TATA-BINDING PROTEIN ASSOCIATED FACTORS. It is now know that TATA BOX BINDING PROTEIN-LIKE PROTEINS may take the place of TATA-box binding protein in the complex. RNA Polymerase II Transcription Factor D,TFIID,Transcription Factor IID

Related Publications

B C Hoopes, and J F LeBlanc, and D K Hawley
June 1990, Cell,
B C Hoopes, and J F LeBlanc, and D K Hawley
October 1993, Nature,
B C Hoopes, and J F LeBlanc, and D K Hawley
November 1992, Nature,
B C Hoopes, and J F LeBlanc, and D K Hawley
January 1992, Gene expression,
B C Hoopes, and J F LeBlanc, and D K Hawley
June 1999, Molecular and cellular biology,
B C Hoopes, and J F LeBlanc, and D K Hawley
September 1998, Cell,
B C Hoopes, and J F LeBlanc, and D K Hawley
December 1991, Cell,
B C Hoopes, and J F LeBlanc, and D K Hawley
May 2004, RNA (New York, N.Y.),
Copied contents to your clipboard!