Dimethyl sulfoxide targets phage RNA polymerases to promote transcription. 2005

Zhiqiang Chen, and Yi Zhang
State Key Laboratory of Virology and Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.

Dimethyl sulfoxide (DMSO) is a "universal" solvent in pharmaceutical sciences and cell biology. DMSO was previously reported to facilitate in vitro transcription of chromatin and supercoiled plasmid, with the underlying mechanism being attributed to the alteration of the template structure. Here, we demonstrated that low concentrations of DMSO significantly increase the phage polymerase-catalyzed RNA synthesis when the naked and short PCR products were used as templates, suggesting that DMSO promotes transcription through additional mechanism(s). Interestingly, SP6 RNA polymerase was more sensitive to the DMSO stimulation than T7 RNA polymerase, suggesting that the polymerase is an important target for DMSO stimulation of RNA synthesis. Consistent with this finding, we also showed that DMSO dramatically elevated the RNA polymerase activity. This elevated activity is explained by altered polymerase structure as reflected by a change in intrinsic fluorescence. Furthermore, DMSO was shown to simultaneously accumulate both the abortive and full-length transcripts, leading us to conclude that the DMSO-altered polymerase structure primarily encodes an enhanced activity at the stage of transcription initiation. DMSO-induced alteration of the polymerase structure and function highlights a potentially generalized mechanism in interpreting the molecular action of this popular solvent.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

Zhiqiang Chen, and Yi Zhang
November 2008, Current drug targets,
Zhiqiang Chen, and Yi Zhang
July 1996, BioTechniques,
Zhiqiang Chen, and Yi Zhang
June 1974, Advances in experimental medicine and biology,
Zhiqiang Chen, and Yi Zhang
January 1974, Basic life sciences,
Zhiqiang Chen, and Yi Zhang
October 1993, Molecular microbiology,
Zhiqiang Chen, and Yi Zhang
June 1968, Biopolymers,
Zhiqiang Chen, and Yi Zhang
October 1974, Nature,
Zhiqiang Chen, and Yi Zhang
June 2009, Genes & development,
Copied contents to your clipboard!