JAK-STAT signaling involved in phorbol 12-myristate 13-acetate- and dimethyl sulfoxide-induced 2'-5' oligoadenylate synthetase expression in human HL-60 leukemia cells. 2005

Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.

The JAK-STAT signal transduction cascade participates in various cellular processes, including immune response, cell replication, differentiation and oncogenesis. Here, we report that this cascade is induced in two human myeloid HL-60 leukemia cell variants by the granulocyte differentiation inducer dimethyl sulfoxide (DMSO) and macrophage differentiation inducer phorbol 12-myristate 13-acetate (PMA). DMSO and PMA also induced the expression and catalytic activity of 2'-5' oligoadenylate synthetase (2-5A synthetase), a known interferon (IFN) inducible enzyme. The HL-60 cell variants included HL-205, which is susceptible to DMSO- and PMA-induced differentiation, and HL-525, which is susceptible to DMSO- but not to PMA-induced differentiation. Treatment of HL-205 and HL-525 cells with DMSO and HL-205 cells with PMA-induced JAK1 phosphorylation, JAK1/STAT1 association, formation of STAT1-STAT2 heterodimers, and the binding of the active IFN stimulating growth factor 3 (ISGF3) to the IFN-stimulated response element (ISRE) fragment isolated from the 2-5A synthetase promoter. These events were either reduced or absent in the resistant HL-525 cells treated with PMA. Taken together, our data implicate the above signaling cascade in DMSO- and PMA-induced 2-5A synthetase expression and catalytic activity in the HL-60 cell system.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D015088 2',5'-Oligoadenylate Synthetase An enzyme that catalyzes the conversion of ATP into a series of (2'-5') linked oligoadenylates and pyrophosphate in the presence of double-stranded RNA. These oligonucleotides activate an endoribonuclease (RNase L) which cleaves single-stranded RNA. Interferons can act as inducers of these reactions. 2',5'-Oligoadenylate Polymerase,2-5A Synthetase,(2'-5')An Polymerase,2',5'-Oligo(A) Polymerase,2',5'-Oligo(A) Synthetase,2,5 Oligoadenylate Polymerase,2,5 Oligoadenylate Synthetase,ATP-(2'-5')oligo(A)adenylyltransferase,2',5' Oligoadenylate Polymerase,2',5' Oligoadenylate Synthetase,Oligoadenylate Polymerase, 2,5,Oligoadenylate Synthetase, 2,5,Polymerase, 2',5'-Oligoadenylate,Polymerase, 2,5 Oligoadenylate,Synthetase, 2',5'-Oligoadenylate,Synthetase, 2,5 Oligoadenylate

Related Publications

Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
January 1982, Carcinogenesis,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
July 1992, European journal of biochemistry,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
December 2008, Biotechnology letters,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
March 1993, Biochimica et biophysica acta,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
October 1983, Cancer research,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
November 1994, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
May 1981, Cancer research,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
October 1985, Cancer research,
Shenhav Cohen, and Sara Dovrat, and Ronit Sarid, and Eliezer Huberman, and Samuel Salzberg
July 2006, The British journal of nutrition,
Copied contents to your clipboard!