Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. 2005

Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
Neurobiology Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014, Trieste, Italy.

Nicotinic ACh receptors (nAChRs) can undergo desensitization, a reversible reduction in response during sustained agonist application. Although the mechanism of desensitization remains incompletely understood, recent investigations have elucidated new properties underlying desensitization, indicating that it might be important to control synaptic efficacy, responses to cholinergic agents, and certain nAChR-related disease states. Thus, studying how different nAChR subunits contribute to desensitization might help to explain variations in responsiveness to drugs, and might thus improve their therapeutic applications. Agonist-specific desensitization, desensitization arising from resting receptors, natural mutations dramatically altering desensitization, and the possibility that recovery from desensitization is an important process for modulating receptor function, together provide a new framework for considering desensitization as a target to shape cholinergic signaling.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
September 2015, British journal of pharmacology,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
April 2013, Pflugers Archiv : European journal of physiology,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
December 1992, Brain research. Molecular brain research,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
February 1997, Trends in neurosciences,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
July 2003, American journal of physiology. Gastrointestinal and liver physiology,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
December 2002, Journal of neurobiology,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
April 1999, Neurochemistry international,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
October 2013, Biochemical pharmacology,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
February 2015, Trends in pharmacological sciences,
Rashid Giniatullin, and Andrea Nistri, and Jerrel L Yakel
January 1971, Acta biologica et medica Germanica,
Copied contents to your clipboard!