Primary malignant rhabdoid tumor of the central nervous system--a comprehensive review. 2005

Ismail H Tekkök, and Aydin Sav
Department of Neurosurgery, Mersin University School of Medicine, Zeytinlibahce Caddesi, 33079, Mersin, Turkey. tekkokih@hotmail.com

This paper presents the case of an eight-year-old girl who presented with headache and vomiting and was found to harbor a right fronto-temporo-parietal, partially cystic and centrally solid tumor that measured 11 x 8 x 7 cm. This vascular tumor was gross totally removed. The initial histopathologic diagnosis was hemangiopericytoma and the patient received a total dose of 5330 cGy of external cranial radiation. Twelve months later, the patient presented with left lower quadrant pain and limping and the spinal MR scans showed metastases at T4-5, T7, T12-L1 and L3 levels. The voluminous lesion at T12-L1 was surgically removed. Histopathological examination of both specimens revealed that both tumors in fact were malignant rhabdoid tumor (MRT). The patient did not benefit from spinal surgery and died 4 months later. A review of the literature has shown that since Briner et al'. first report in 1985 [Pediatr Pathol 3: 117-118, 1985], 100 MRT cases have been published. More than two-thirds of reviewed cases presented with local recurrence or subarachnoid spread after a mean period of 6.9 months after diagnosis and died two months later. Infratentorial and pineal location and surgery limited to biopsy were poor prognostic indicators. Twenty-two cases remained alive at a mean period of 24.5 months. The longest survival with an intracranial MRT was 65 months. Of those remaining alive, 15 had no evidence of disease (NED). Our case is the first MRT case immunopositive for HMB-45 and has also shown that the MRT cells grow aggressive over time as demonstrated by a four-fold increase in MIB-1 labeling index.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D013120 Spinal Cord Neoplasms Benign and malignant neoplasms which occur within the substance of the spinal cord (intramedullary neoplasms) or in the space between the dura and spinal cord (intradural extramedullary neoplasms). The majority of intramedullary spinal tumors are primary CNS neoplasms including ASTROCYTOMA; EPENDYMOMA; and LIPOMA. Intramedullary neoplasms are often associated with SYRINGOMYELIA. The most frequent histologic types of intradural-extramedullary tumors are MENINGIOMA and NEUROFIBROMA. Intradural-Extramedullary Spinal Cord Neoplasms,Intramedullary Spinal Cord Neoplasms,Intramedullary Spinal Cord Neoplasms, Primary,Neoplasms, Spinal Cord,Primary Intramedullary Spinal Cord Neoplasms,Primary Spinal Cord Neoplasms, Intramedullary,Spinal Cord Neoplasms, Benign,Spinal Cord Neoplasms, Intradural-Extramedullary,Spinal Cord Neoplasms, Intramedullary,Spinal Cord Neoplasms, Malignant,Spinal Cord Neoplasms, Primary Intramedullary,Tumors, Spinal Cord,Intradural Extramedullary Spinal Cord Neoplasms,Neoplasm, Spinal Cord,Spinal Cord Neoplasm,Spinal Cord Neoplasms, Intradural Extramedullary,Spinal Cord Tumor,Spinal Cord Tumors,Tumor, Spinal Cord
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography

Related Publications

Ismail H Tekkök, and Aydin Sav
January 1997, Ultrastructural pathology,
Ismail H Tekkök, and Aydin Sav
April 1987, Human pathology,
Ismail H Tekkök, and Aydin Sav
December 1996, Wisconsin medical journal,
Ismail H Tekkök, and Aydin Sav
May 2002, Journal of pediatric hematology/oncology,
Ismail H Tekkök, and Aydin Sav
February 1995, Journal of pediatric hematology/oncology,
Ismail H Tekkök, and Aydin Sav
May 1992, Surgical neurology,
Ismail H Tekkök, and Aydin Sav
January 1992, Medical and pediatric oncology,
Copied contents to your clipboard!