GAAAATATGATA-like elements in androgen-associated regulation of the prostatic acid phosphatase gene. 2005

Jingdong Shan, and Katja Porvari, and Pirkko Vihko
Biocenter Oulu and Research Center for Molecular Endocrinology, University of Oulu, FI-90014 Oulu, Finland.

Purpose of the study was to clarify molecular mechanisms behind tissue-specific and hormone-dependent gene expression using human prostatic acid phosphatase (hPAP) gene as a model. Regulatory region -734/+467 of hPAP gene induces transcription of a reporter gene in the prostate of transgenic mice. It contains five elements, A-E, homologous to GAAAATATGATA sequence, which is connected to prostate-specific and androgen-dependent gene expression. The significance of the C, D and E elements in the transcriptional regulation of hPAP gene was evaluated using reporter gene assays. The deletion of element C from the hPAP promoter constructs mainly decreased their transcriptional activity in the presence of androgen, while increased activity particularly in the absence of androgens was detected after removal of elements D and E. These events took place in transiently transfected prostatic LNCaP cells, but not in non-prostatic COS-1 cells. As a conclusion, the GAAAATATGATA-like elements are involved in the transcriptional regulation of hPAP promoter constructs in prostatic cells. These elements mediate both transcriptional activation and repression depending on the hormonal status of the cells and location of the element in the construct.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

Jingdong Shan, and Katja Porvari, and Pirkko Vihko
August 1995, Biochemical and biophysical research communications,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
March 1994, Molecular and cellular endocrinology,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
January 1993, Archives of biochemistry and biophysics,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
May 1992, Biochemical and biophysical research communications,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
April 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
April 2000, Biochimica et biophysica acta,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
May 2013, International journal of molecular sciences,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
December 2005, Endocrine-related cancer,
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
May 1979, Lancet (London, England),
Jingdong Shan, and Katja Porvari, and Pirkko Vihko
September 1972, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
Copied contents to your clipboard!