Increased growth factor expression and cell proliferation after contusive spinal cord injury. 2005

Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
Department of Neuroscience, Georgetown University, NRB-EG31, Washington, DC 20057, USA.

The damage caused by traumatic central nervous system (CNS) injury can be divided into two phases: primary and secondary. The initial injury destroys many of the local neurons and glia and triggers secondary mechanisms that result in further cell loss. Approximately 50% of the astrocytes and oligodendrocytes in the spared white matter of the epicenter die by 24 h after spinal cord injury (SCI), but their densities return to normal levels by 6 weeks. This repopulation is largely due to the proliferation of local progenitors that divide in response of CNS injury. Previous studies indicate that the secondary events that cause cell death after SCI also increase the local levels of several growth factors that stimulate the proliferation of these endogenous progenitors. We compared the spatial pattern of the post-injury up-regulation of the pro-mitotic growth factors with that of 5-bromodeoxyuridine (BrdU) incorporation to determine if each could play a role in proliferation. Three days after a standard contusive SCI or laminectomy, animals received intraperitoneal BrdU injections to label dividing cells and were perfused 2 h after the last injection. Immunohistochemistry for BrdU and basic fibroblast growth factor (FGF2) and in situ hybridization for ciliary neurotrophic factor (CNTF) and glial growth factor (GGF2) mRNA were used to compare the number of dividing cells with growth factor levels in sections 2 and 4 mm from the epicenter. All three growth factors are significantly up-regulated 3 days after SCI, when cell proliferation is maximal. The increase in GGF2 and FGF2 levels is highest in sections 2 mm rostral to the epicenter, mimicking BrdU incorporation. Addition of rhGGF2 to cultured cells isolated from the spinal cord 3 days after SCI increased the number of NG2+ glial progenitors. These data suggest that FGF2 and GGF2 may contribute to the spontaneous recovery observed after SCI by stimulating the proliferation of local progenitors that help repopulate the injured cord.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
September 1996, Experimental neurology,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
March 1994, Brain research. Molecular brain research,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
July 2009, Journal of neurotrauma,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
May 2005, Glia,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
November 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
May 2016, Neurobiology of disease,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
October 1982, Experimental neurology,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
November 2012, Journal of neurotrauma,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
November 1987, Surgical neurology,
Laila J Zai, and Soonmoon Yoo, and Jean R Wrathall
February 2009, Glia,
Copied contents to your clipboard!