Specific retinotopically based magnocellular impairment in a patient with medial visual dorsal stream damage. 2006

Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
Department of Biophysics and Center for Ophthalmology, IBILI-Faculty of Medicine, Az. de Sta Comba, 3000-354 Coimbra, Portugal. mcbranco@ibili.uc.pt

We report here retinotopically based magnocellular deficits in a patient with a unilateral parieto-occipital lesion. We applied convergent methodologies to study his dorsal stream processing, using psychophysics as well as structural and functional imaging. Using standard perimetry we found deficits involving the periphery of the left inferior quadrant abutting the horizontal meridian, suggesting damage of dorsal retinotopic representations beyond V1. Retinotopic damage was much more extensive when probed with frequency-doubling based contrast sensitivity measurements, which isolate processing within the magnocellular pathway: sensitivity losses now encroached on the visual central representation and did not respect the horizontal meridian, suggesting further damage to dorsal stream retinotopic areas that contain full hemi-field representations, such as human V3A or V6. Functional imaging revealed normal responses of human MT+ to motion contrast. Taken together, these findings are consistent with a recent proposal of two distinct magnocellular dorsal stream pathways: a latero-dorsal pathway passing to MT+ and concerned with the processing of coherent motion, and a medio-dorsal pathway that routes information from V3A to the human homologue of V6. Anatomical evidence was consistent with sparing of the latero-dorsal pathway in our patient, and was corroborated by his normal performance in speed, direction discrimination and motion coherence tasks with 2D and 3D objects. His pattern of dysfunction suggests damage only to the medio-dorsal pathway, an inference that is consistent with structural imaging data, which revealed a lesion encompassing the right parieto-occipital sulcus.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009778 Occipital Lobe Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch. Annectant Gyrus,Calcarine Fissure,Calcarine Sulcus,Cuneate Lobule,Cuneus,Cuneus Cortex,Cuneus Gyrus,Gyrus Lingualis,Lingual Gyrus,Lunate Sulcus,Medial Occipitotemporal Gyrus,Occipital Cortex,Occipital Gyrus,Occipital Region,Occipital Sulcus,Sulcus Calcarinus,Calcarine Fissures,Calcarinus, Sulcus,Cortex, Cuneus,Cortex, Occipital,Cortices, Cuneus,Cortices, Occipital,Cuneate Lobules,Cuneus Cortices,Fissure, Calcarine,Fissures, Calcarine,Gyrus Linguali,Gyrus, Annectant,Gyrus, Cuneus,Gyrus, Lingual,Gyrus, Medial Occipitotemporal,Gyrus, Occipital,Linguali, Gyrus,Lingualis, Gyrus,Lobe, Occipital,Lobes, Occipital,Lobule, Cuneate,Lobules, Cuneate,Occipital Cortices,Occipital Lobes,Occipital Regions,Occipitotemporal Gyrus, Medial,Region, Occipital,Regions, Occipital,Sulcus, Calcarine,Sulcus, Lunate,Sulcus, Occipital
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D010468 Perceptual Disorders Cognitive disorders characterized by an impaired ability to perceive the nature of objects or concepts through use of the sense organs. These include spatial neglect syndromes, where an individual does not attend to visual, auditory, or sensory stimuli presented from one side of the body. Hemispatial Neglect,Hemisensory Neglect,Sensory Neglect,Somatosensory Discrimination Disorder,Discrimination Disorder, Somatosensory,Discrimination Disorders, Somatosensory,Hemisensory Neglects,Hemispatial Neglects,Neglect, Hemisensory,Neglect, Hemispatial,Neglect, Sensory,Neglects, Hemisensory,Perceptual Disorder,Sensory Neglects,Somatosensory Discrimination Disorders
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D001925 Brain Damage, Chronic A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions. Encephalopathy, Chronic,Chronic Encephalopathy,Chronic Brain Damage
D002543 Cerebral Hemorrhage Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA. Brain Hemorrhage, Cerebral,Cerebral Parenchymal Hemorrhage,Hemorrhage, Cerebral,Intracerebral Hemorrhage,Hemorrhage, Cerebrum,Brain Hemorrhages, Cerebral,Cerebral Brain Hemorrhage,Cerebral Brain Hemorrhages,Cerebral Hemorrhages,Cerebral Parenchymal Hemorrhages,Cerebrum Hemorrhage,Cerebrum Hemorrhages,Hemorrhage, Cerebral Brain,Hemorrhage, Cerebral Parenchymal,Hemorrhage, Intracerebral,Hemorrhages, Cerebral,Hemorrhages, Cerebral Brain,Hemorrhages, Cerebral Parenchymal,Hemorrhages, Cerebrum,Hemorrhages, Intracerebral,Intracerebral Hemorrhages,Parenchymal Hemorrhage, Cerebral,Parenchymal Hemorrhages, Cerebral

Related Publications

Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
March 2009, Developmental medicine and child neurology,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
January 2014, Frontiers in human neuroscience,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
December 2021, Brain structure & function,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
January 2012, NeuroImage. Clinical,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
January 1997, Vision research,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
April 2009, Current biology : CB,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
April 2015, Brain and cognition,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
October 2013, Brain and cognition,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
January 2015, Frontiers in computational neuroscience,
Miguel Castelo-Branco, and Mafalda Mendes, and Maria Fátima Silva, and Cristina Januário, and Egídio Machado, and Alda Pinto, and Patrícia Figueiredo, and António Freire
August 2022, Journal of experimental psychology. Human perception and performance,
Copied contents to your clipboard!