Microbial strategies to prevent oxygen-dependent killing by phagocytes. 1992

A Haas, and W Goebel
Institute of Genetics and Microbiology, University of Würzburg, Germany.

Microorganisms which are taken up by professional phagocytic cells of a host organism (e.g., by macrophages and polymorphonuclear leukocytes) encounter a series of antimicrobial events including confrontation with toxic oxygen species, derived mainly from the superoxide radical produced by phagocytic NADPH oxidase after uptake of the microorganism. Many microbes are susceptible to the oxygen-dependent phagocytic stress and are efficiently killed. The strategies of some microorganisms to bypass an encounter with the phagocytes' reactive oxygen species, and biochemical systems contributing to the microbes' resistance to killing by reactive oxygen species are outlined.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010586 Phagocytes Cells that can carry out the process of PHAGOCYTOSIS. Phagocyte,Phagocytic Cell,Phagocytic Cells,Cell, Phagocytic,Cells, Phagocytic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D016897 Respiratory Burst A large increase in oxygen uptake by neutrophils and most types of tissue macrophages through activation of an NADPH-cytochrome b-dependent oxidase that reduces oxygen to a superoxide. Individuals with an inherited defect in which the oxidase that reduces oxygen to superoxide is decreased or absent (GRANULOMATOUS DISEASE, CHRONIC) often die as a result of recurrent bacterial infections. Oxidative Burst,Burst, Oxidative,Burst, Respiratory,Bursts, Oxidative,Bursts, Respiratory,Oxidative Bursts,Respiratory Bursts

Related Publications

A Haas, and W Goebel
March 1978, The New England journal of medicine,
A Haas, and W Goebel
March 1978, The New England journal of medicine,
A Haas, and W Goebel
December 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A Haas, and W Goebel
June 1978, The New England journal of medicine,
A Haas, and W Goebel
January 1984, Ergebnisse der inneren Medizin und Kinderheilkunde,
A Haas, and W Goebel
January 1992, Transactions of the American Clinical and Climatological Association,
A Haas, and W Goebel
October 1978, Infection and immunity,
A Haas, and W Goebel
November 1983, The Journal of infectious diseases,
Copied contents to your clipboard!