Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. 1992

D J Edell, and V V Toi, and V M McNeil, and L D Clark
Harvard-MIT Division of Health Science and Technology, Cambridge 02139.

Insertable microelectrode arrays can be used to activate neurons or to sense neural signals for use in prosthetics. The relationship of the microelectrodes to the neurons is determined by random alignment and by biocompatibility. Issues that determine the biocompatibility of insertable microelectrode arrays were investigated. Arrays were implanted into the cortex of rabbit brain and fixed to the skull. Following six-month survival, neuron density as a function of distance from the shafts of the arrays was measured to assess destruction of neurons. Results from a limited number of tests indicated that there was minimal tissue response along the sides of the shafts when shafts were well sharpened, had sufficiently small tip angles, and were clean. Tissue was usually more reactive at the tips of the shafts. It was concluded that silicon microshafts of appropriate shaft and tip design were biocompatible along the sides of the shaft, but that relatively severe reactions could be anticipated at the tips. Recording or stimulation sites should be located away from the tips on the sides of the shafts for better coupling with individual neurons. Measurement of neuron density as a function of distance from the shafts was a sensitive and quantitative technique for assessing biocompatibility. Additional measures such as glial density as a function of distance from the shafts, and incidence of microhematoma formation were proposed.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004567 Electrodes, Implanted Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body. Implantable Electrodes,Implantable Stimulation Electrodes,Implanted Electrodes,Implanted Stimulation Electrodes,Electrode, Implantable,Electrode, Implantable Stimulation,Electrode, Implanted,Electrode, Implanted Stimulation,Electrodes, Implantable,Electrodes, Implantable Stimulation,Electrodes, Implanted Stimulation,Implantable Electrode,Implantable Stimulation Electrode,Implanted Electrode,Implanted Stimulation Electrode,Stimulation Electrode, Implantable,Stimulation Electrode, Implanted,Stimulation Electrodes, Implantable,Stimulation Electrodes, Implanted
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D005911 Gliosis The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion. Astrocytosis,Astrogliosis,Glial Scar,Astrocytoses,Glial Scars,Scar, Glial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D012825 Silicon A trace element that constitutes about 27.6% of the earth's crust in the form of SILICON DIOXIDE. It does not occur free in nature. Silicon has the atomic symbol Si, atomic number 14, and atomic weight [28.084; 28.086]. Silicon-28,Silicon 28

Related Publications

D J Edell, and V V Toi, and V M McNeil, and L D Clark
January 1972, Progress in brain research,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
July 2011, Journal of biomedical materials research. Part A,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
January 1956, Journal de physiologie,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
June 1959, Journal of comparative and physiological psychology,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
January 1956, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
August 1961, Biulleten' eksperimental'noi biologii i meditsiny,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
August 2004, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
August 1976, Acta physiologica Scandinavica,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
January 1998, Biomedizinische Technik. Biomedical engineering,
D J Edell, and V V Toi, and V M McNeil, and L D Clark
January 1967, Acta neurologica Scandinavica,
Copied contents to your clipboard!