Developmental changes in oscillatory and slow responses of the rat accessory olfactory bulb. 2005

T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.

Field potential, patch-clamp and optical recordings were performed in accessory olfactory bulb slices of postnatal rats following single electrical stimulation of the vomeronasal nerve layer. On the basis of differences in the components of the field potential, postnatal days were divided into three periods: immature (until postnatal day 11), transitional (postnatal days P12-17) and mature periods (after postnatal day 18). During the immature period, vomeronasal nerve layer stimulation provoked a characteristic damped oscillatory field potential, and the field potential recorded in the glomerular layer consisted of a compound action potential followed by several periodic negative peaks superimposed on slow components. Reduction in [Mg2+] enhanced slow components but did not affect oscillation, whereas an NMDA receptor antagonist, D-2-amino-5-phosphonovalerate, depressed slow components but did not affect the oscillation. During the mature period, slow components and the periodic waves (oscillation) disappeared. The time course of the field potential was similar to that in adults, suggesting that the accessory olfactory bulb reached electrophysiologically maturity at postnatal day 18. A non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, inhibited vomeronasal nerve layer-induced responses, while D-2-amino-5-phosphonovalerate had no effect, suggesting that NMDA and non-NMDA receptors are active in immature tissues, whereas non-NMDA receptors predominated in mature tissue. Results from whole-cell patch recordings in mitral and granule cells yielded results consistent with those from field potential and optical recordings. Further, a gradual decrease in number and frequency of oscillating waves was observed until postnatal day 17. Analyses of the depth profile of field potentials and current source density in immature tissue suggested that the oscillation and slow components originated in the glomerular layer but not in the external plexiform/mitral cell layer. Further, a new type of oscillation, which was independent of the reciprocal dendrodendritic synapses between mitral and granule cells, was detected. These data indicate that the lack of oscillatory suppression by immature NMDA receptors may play a critical role in the dynamic alteration of bulbar conditions.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009991 Oscillometry The measurement of frequency or oscillation changes. Oscillometries
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
November 2006, Neuroreport,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
August 1995, Neuroscience letters,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
August 1996, Brain research,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
December 1998, Chemical senses,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
January 1999, Journal of neurophysiology,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
November 2001, Brain research. Developmental brain research,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
December 2001, Brain research. Developmental brain research,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
April 1963, The Journal of comparative neurology,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
December 1987, Brain research,
T Sugai, and T Miyazawa, and H Yoshimura, and N Onoda
May 1975, The Journal of comparative neurology,
Copied contents to your clipboard!