DARPP-32 (dopamine and 3',5'-cyclic adenosine monophosphate-regulated neuronal phosphoprotein) is essential for the maintenance of thyroid differentiation. 2005

Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, C/Arturo Duperier 4, 28029 Madrid, Spain. custodia.garcia@urjc.es

Coordination of events leading to differentiation is mediated by the concerted action of multiple signal transduction pathways. In general, the uncoupling of mechanisms linking differentiation to cell cycle exit is a hallmark of cancer, yet the identity and regulation of molecules integrating signal transduction pathways remains largely unknown. One notable exception is DARPP-32 (dopamine and cAMP-regulated neuronal phosphoprotein, molecular mass, 32 kDa), a third messenger that integrates multiple signaling pathways in the brain. Thyroid cells represent an excellent model for understanding the coupling of signal transduction pathways leading to both proliferation and differentiation. The cooperative action of IGF-I and TSH together, but not alone, enable thyroid cells to proliferate while maintaining their differentiated state. How signaling downstream from these molecules is integrated is not known. Here we show that DARPP-32 expression is targeted by TSH and IGF-I in thyrocytes. Significantly, dedifferentiated, tumoral, or Ras-transformed thyrocytes fail to express DARPP-32 whereas short interfering RNA-mediated silencing of DARPP-32 expression in normally differentiated thyroid cells results in loss of differentiation markers such as thyroid transcription factor 1, Pax8, thyroglobulin, and the Na/I symporter. Consistently, DARPP-32 reexpression in ras-transformed cells results in reactivation of the otherwise silent thyroglobulin and thyroperoxidase promoter. Thus, DARPP-32 is critical for the maintenance of thyroid differentiation by TSH and IGF-I, and loss of DARPP-32 expression may be a characteristic of thyroid cancer. Our results also raise the possibility that DARPP-32 may play a similar role in the maintenance of differentiation of a range of other cell types.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
May 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
December 1984, The Journal of biological chemistry,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
December 1984, The Journal of biological chemistry,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
October 1991, Journal of the autonomic nervous system,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
January 1988, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
January 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
October 2003, Cancer,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
February 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
April 1992, The Journal of comparative neurology,
Custodia García-Jiménez, and Miguel A Zaballos, and Pilar Santisteban
September 1991, Neuroscience letters,
Copied contents to your clipboard!