Adhesion of B lymphoid (MPC-11) cells to type I collagen is mediated by integral membrane proteoglycan, syndecan. 1992

R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
Department of Pathology, University of Arkansas for Medical Sciences, Little Rock 72205.

Differentiating B lymphocytes undergo changes in cell-cell and cell-matrix adhesion that control their movement through a series of distinct microenvironments. The integral membrane proteoglycan, syndecan, is a candidate for mediating B lymphocyte-matrix interactions because it is expressed on B lymphocytes only at times when they associate with matrix, and because syndecan is known to behave as a matrix receptor on simple epithelia. However, syndecan from B lymphocytes is significantly smaller in molecular mass than syndecan from simple epithelia (85 vs 160 kDa) suggesting that syndecan may have distinct functions on these two cell types. Our study was undertaken to determine if syndecan mediates adhesion of B lineage cells to extracellular matrix. The murine myeloma cell line MPC-11 was used because syndecan is the only major heparan sulfate proteoglycan detected on these cells and because they express a form of syndecan almost identical to that found on normal B lymphocytes. Cell binding assays demonstrate that syndecan binds MPC-11 cells to type I collagen. Binding is inhibited by heparin, by pretreatment of cells with heparitinase or by growth of cells before the assay in chlorate, an inhibitor of sulfation. Solid phase assays show that syndecan purified from MPC-11 cells binds to type I collagen but not type IV collagen, laminin, or fibronectin. The interaction of MPC-11-derived syndecan with type I collagen is of relatively high affinity (Kd app = 143 nM) as measured by affinity coelectrophoresis. However, the 160-kDa form of syndecan isolated from epithelial cells has a greater than fourfold higher affinity for type I collagen (Kd app = 31 nM) than does the MPC-11 syndecan, suggesting that different molecular forms of syndecan have distinct ligand binding properties. These results demonstrate that syndecan can mediate B lymphocyte interactions with matrix and suggest that changes in syndecan expression during B cell differentiation are a mechanism for controlling B cell localization within specific microenvironments.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
April 1989, The Journal of cell biology,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
January 1991, Annals of the New York Academy of Sciences,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
February 1993, Blood,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
November 2008, Experimental cell research,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
January 1991, Development (Cambridge, England),
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
July 2004, The Journal of biological chemistry,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
February 2000, Matrix biology : journal of the International Society for Matrix Biology,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
April 1988, Experimental cell research,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
August 2001, Cancer research,
R D Sanderson, and T B Sneed, and L A Young, and G L Sullivan, and A D Lander
August 2008, Journal of cellular biochemistry,
Copied contents to your clipboard!