Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. 2005

Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.

Systemic autoimmune disease in humans and mice is characterized by loss of immunologic tolerance to a restricted set of self-nuclear antigens. Autoantigens, such as double-stranded (ds) DNA and the RNA-containing Smith antigen (Sm), may be selectively targeted in systemic lupus erythematosus because of their ability to activate a putative common receptor. Toll-like receptor 9 (TLR9), a receptor for CpG DNA, has been implicated in the activation of autoreactive B cells in vitro, but its role in promoting autoantibody production and disease in vivo has not been determined. We show that in TLR9-deficient lupus-prone mice, the generation of anti-dsDNA and antichromatin autoantibodies is specifically inhibited. Other autoantibodies, such as anti-Sm, are maintained and even increased in TLR9-deficient mice. In contrast, ablation of TLR3, a receptor for dsRNA, did not inhibit the formation of autoantibodies to either RNA- or DNA-containing antigens. Surprisingly, we found that despite the lack of anti-dsDNA autoantibodies in TLR9-deficient mice, there was no effect on the development of clinical autoimmune disease or nephritis. These results demonstrate a specific requirement for TLR9 in autoantibody formation in vivo and indicate a critical role for innate immune activation in autoimmunity.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008181 Lupus Nephritis Glomerulonephritis associated with autoimmune disease SYSTEMIC LUPUS ERYTHEMATOSUS. Lupus nephritis is histologically classified into 6 classes: class I - normal glomeruli, class II - pure mesangial alterations, class III - focal segmental glomerulonephritis, class IV - diffuse glomerulonephritis, class V - diffuse membranous glomerulonephritis, and class VI - advanced sclerosing glomerulonephritis (The World Health Organization classification 1982). Glomerulonephritis, Lupus,Lupus Glomerulonephritis,Nephritis, Lupus,Glomerulonephritides, Lupus,Lupus Glomerulonephritides,Lupus Nephritides,Nephritides, Lupus
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000974 Antibodies, Antinuclear Autoantibodies directed against various nuclear antigens including DNA, RNA, histones, acidic nuclear proteins, or complexes of these molecular elements. Antinuclear antibodies are found in systemic autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, scleroderma, polymyositis, and mixed connective tissue disease. Anti-DNA Antibodies,Antibodies, Anti-DNA,Antinuclear Antibodies,Antinuclear Autoantibodies,Antinuclear Autoantibody,Antinuclear Factors,Antinuclear Antibody,Antinuclear Factor,Anti DNA Antibodies,Antibody, Antinuclear,Autoantibody, Antinuclear,Factor, Antinuclear

Related Publications

Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
January 2006, Arthritis and rheumatism,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
January 2008, Immunobiology,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
January 2009, Arthritis research & therapy,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
January 2016, Rheumatology (Oxford, England),
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
July 2012, Clinical immunology (Orlando, Fla.),
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
March 2002, Journal of leukocyte biology,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
March 2016, The Journal of allergy and clinical immunology,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
June 2013, Arthritis and rheumatism,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
February 2007, Seminars in immunology,
Sean R Christensen, and Michael Kashgarian, and Lena Alexopoulou, and Richard A Flavell, and Shizuo Akira, and Mark J Shlomchik
January 2013, Immunology letters,
Copied contents to your clipboard!