Angiotensin II-induced activation of p21-activated kinase 1 requires Ca2+ and protein kinase C{delta} in vascular smooth muscle cells. 2005

Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
Meharry Medical College, Department of Physiology, 1005 DB Todd Blvd., Nashville, TN 37208, USA.

ANG II promotes remodeling of vascular smooth muscle cells (VSMCs) in cardiovascular diseases. It has been shown to activate p21-activated kinase (PAK)1, a critical component of signaling pathways implicated in growth and migration. However, the detailed signaling mechanism by which ANG II induces PAK1 activation in VSMCs remains unclear. Therefore, we have examined the mechanism required for activation of PAK1 by ANG II in VSMCs. ANG II, through activation of the ANG II type 1 receptor, rapidly promotes phosphorylation of PAK1 in VSMCs via a pathway independent of transactivation of the epidermal growth factor receptor. Using selective agonists and inhibitors, we demonstrated that mobilization of intracellular Ca(2+) and PKCdelta activation are required for ANG II-induced PAK1 phosphorylation. Rottlerin, a PKCdelta inhibitor, significantly blocked ANG II-induced PAK1 phosphorylation. Further support for this notion was provided through infection of VSMCs with adenovirus encoding a dominant-negative (dn)PKCdelta, which also markedly reduced phosphorylation of PAK1 by ANG II. In this pathway, Ca(2+) acts upstream of PKCdelta because a Ca(2+) ionophore rapidly induced PKCdelta phosphorylation at Tyr311 and Ca(2+)-dependent PAK1 phosphorylation was blocked by rottlerin. In addition, dnPYK-2, dnRac, and antioxidants inhibited ANG II-induced PAK1 phosphorylation, suggesting that PYK-2, Rac, and reactive oxygen species are involved in the upstream signaling. Finally, dnPAK1 markedly inhibited ANG II-induced protein synthesis in VSMCs. These data provide a novel signaling pathway by which ANG II may contribute to vascular remodeling.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases

Related Publications

Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
June 1998, Circulation research,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
March 1997, The Journal of biological chemistry,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
June 2010, Peptides,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
May 1993, Journal of cardiovascular pharmacology,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
December 2004, Arteriosclerosis, thrombosis, and vascular biology,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
July 1998, The Journal of surgical research,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
July 2007, The Journal of surgical research,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
May 1998, Hypertension (Dallas, Tex. : 1979),
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
October 1998, Biological & pharmaceutical bulletin,
Elethia A Woolfolk, and Satoru Eguchi, and Haruhiko Ohtsu, and Hidekatsu Nakashima, and Hikaru Ueno, and William T Gerthoffer, and Evangeline D Motley
November 1999, The Journal of biological chemistry,
Copied contents to your clipboard!