Principles of N-methyl-D-aspartate receptor allosteric modulation. 2005

Gabriela Popescu
Department of Anesthesiology, University at Buffalo, NY 14214, USA. popescu@buffalo.edu

N-methyl-D-aspartate (NMDA) receptors are glutamate-gated ion channels with complex participation in synaptic transmission, integration, and plasticity. They are highly permeable to Ca(2+), activate with characteristic kinetics, and generate currents with distinct amplitudes according to stimulation frequency. Multiple endogenous and pharmacological agents bind at distinct locations throughout the protein and modulate NMDA receptor responses with allosteric mechanisms. The NMDA receptor activation pathway consists of a series of consecutive, stepwise structural rearrangements rather than a binary, closed-open reaction. This high-resolution multistate gating reaction is used here to investigate the effects of ideal, state-specific modulators on physiologically relevant parameters of the macroscopic responses to single-pulse and high-frequency repetitive stimulation. The simulations suggest three significant aspects of NMDA receptor modulation: 1) modest, 1 kcal/mol bidirectional perturbations in receptor free energy cause up to a 50-fold change in the total charge transferred; 2) activators modulate primarily the response time course, whereas inhibitors are more effectively modulating current peak amplitude; and 3) state-specific modulators have opposite effects on charge transfer and current potentiation by high-frequency stimulation. The results imply that the magnitude of the NMDA receptor-mediated Ca(2+) influx and the receptor's ability to discriminate stimulation frequency can be controlled separately. Thus, a detailed mechanistic characterization of NMDA receptor allosteric effectors may identify function-specific modulators and provides a road map for the development of combinatorial strategies for local, transient tuning of specific receptor functions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

Gabriela Popescu
January 1990, Advances in pharmacology (San Diego, Calif.),
Gabriela Popescu
February 2002, Current drug targets. CNS and neurological disorders,
Gabriela Popescu
December 1998, Proceedings of the National Academy of Sciences of the United States of America,
Gabriela Popescu
November 2003, Proceedings of the National Academy of Sciences of the United States of America,
Gabriela Popescu
December 2006, The European journal of neuroscience,
Copied contents to your clipboard!