The ryanodine receptors Ca2+ release channels: cellular redox sensors? 2005

Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
FONDAP Center of Molecular Studies of the Cell, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile. chidalgo@med.u-chile.cl

The release of Ca2+ from intracellular stores mediated by ryanodine receptors (RyR) Ca2+ release channels is essential for striated muscle contraction and contributes to diverse neuronal functions including synaptic plasticity. Through Ca2+-induced Ca2+-release, RyR can amplify and propagate Ca2+ signals initially generated by Ca2+ entry into cardiac muscle cells or neurons. In contrast, RyR activation in skeletal muscle is under membrane potential control and does not require Ca2+ entry. Non-physiological or endogenous redox molecules can change RyR function via modification of a few RyR cysteine residues. This critical review will address the functional effects of RyR redox modification on Ca2+ release in skeletal muscle and cardiac muscle as well as in the activation of signaling cascades and transcriptional regulators required for synaptic plasticity in neurons. Specifically, the effects of endogenous redox-active agents, which induce S-nitrosylation or S-glutathionylation of particular channel cysteine residues, on the properties of muscle RyRs will be discussed. The effects of endogenous redox RyR modifications on cardiac preconditioning will be analyzed as well. In the hippocampus, sequential activation of ERKs and CREB is a requisite for Ca2+-dependent gene expression associated with long lasting synaptic plasticity. Results showing that reactive oxygen/nitrogen species modify RyR channels from neurons and the RyR-mediated sequential activation of neuronal ERKs and CREB produced by hydrogen peroxide and other stimuli will be also discussed.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
January 2002, Cell calcium,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
November 2002, The Journal of biological chemistry,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
January 1998, International review of cytology,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
August 1998, Science (New York, N.Y.),
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
December 2005, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
December 1997, Molecular pharmacology,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
May 1998, Biophysical journal,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
August 2004, The international journal of biochemistry & cell biology,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
May 2010, FEBS letters,
Cecilia Hidalgo, and Paulina Donoso, and M Angélica Carrasco
September 2007, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!