DNA from recombinogenic lambda bacteriophages generated by arl mutant of Escherichia coli is cleaved by single-strand-specific endonuclease S1. 1979

J B Hays, and B E Korba

When propagated on arl strains (a subclass of Escherichia coli hyper-rec mutants), lambda "Red-" duplication phages accumulated an enhanced potential for recombination. The physical properties of the recombinogenic phages thus obtained ("Arl-" phages) were similar to those of phages grown on arl+ bacteria. However, Arl- phage DNA was cleaved by endonuclease S1 under conditions such that the nuclease is specific for single-stranded DNA;DNA from control phages was S1-resistant. The number of S1 sites (defined by the apparent decrease in single-strand molecular weight) reached a maximum (seven to nine sites per strand of lambda DNA) after five or six rounds of growth on arl bacteria. Similarly, the recombinogenicity of Arl- phages reached a limiting value (recombination frequency, 15%) that was 5 times that of Arl+ phages. Recombinogenicity and S1 susceptibility were accumulated concomitantly during growth on arl+ bacteria. If all increased recombination occurred at the S1 sites, then these regions (about 40 bases each) were about 300 times as recombinogenic as normal DNA regions of the same size, and 1.5 times as recombinogenic as UV-induced lesions. Chromosomal DNA and plasmid DNA (pBR322) from arl cells were more susceptible to nuclease S1 than was DNA from arl+ bacteria. Analysis of the cleavage products suggests that the S1 sites on Arl- lambda phage DNA are located randomly.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

J B Hays, and B E Korba
April 1975, Biochimica et biophysica acta,
J B Hays, and B E Korba
August 1974, Biochemical and biophysical research communications,
J B Hays, and B E Korba
December 1994, The Journal of biological chemistry,
J B Hays, and B E Korba
April 1989, Journal of biomolecular structure & dynamics,
J B Hays, and B E Korba
January 1973, Molecular & general genetics : MGG,
J B Hays, and B E Korba
December 1974, Journal of molecular biology,
J B Hays, and B E Korba
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
J B Hays, and B E Korba
April 1979, Proceedings of the National Academy of Sciences of the United States of America,
J B Hays, and B E Korba
July 1977, Proceedings of the National Academy of Sciences of the United States of America,
J B Hays, and B E Korba
January 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!