Acute lesions in rats caused by 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233) or nitromin: a comparison with rates of reduction in microsomal systems from target organs. 1992

I N White, and A Cahill, and A Davies, and P Carthew
MRC Toxicology Unit, Carshalton, Surrey, UK.

Pathological lesions to male Fischer rats were investigated 24 h after the administration of 3-amino-1,2,4-benzotriazine-1,4- dioxide (SR 4233) or nitromin, two compounds which need to undergo bioreductive activation in order to exert their toxic effects. Although SR 4233 reduction leads to a putative free radical species while with nitromin a bifunctional alkylating agent is formed, in both instances, the bone marrow was a major target organ. However, the response of other organs to these compounds differed. SR 4233 caused lesions to the olfactory epithelium, liver, kidney and thymus. Nitromin caused focal haemorrhages on the intestine, which were reduced in germ-free rats. Rates of reduction of SR 4233 or nitromin were determined under anaerobic conditions using microsomal preparations from target tissues. With SR 4233 as a substrate, reductase activities were highest in the olfactory epithelium, 6 fold higher than in the liver. SR 4233 reductase activities generally correlated with those of NADPH:cytochrome c reductase or the concentration of cytochrome P-450 reductase protein in the affected organs while with nitromin, there appeared to be no such relationship. The present results support the concept that the expression of pathological damage in vivo is a multifactorial process and does not directly correlate with initial rates of reduction of either drug determined in vitro.

UI MeSH Term Description Entries
D008297 Male Males
D008466 Mechlorethamine A biologic alkylating agent that exerts its cytotoxic effects by forming DNA ADDUCTS and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. The hydrochloride is an antineoplastic agent used to treat HODGKIN DISEASE and LYMPHOMA. Chlorethazine,Chlormethine,Mechlorethamine Oxide,Mustine,Nitrogen Mustard,Nitrogen Mustard N-Oxide,Bis(2-chloroethyl)methylamine,Caryolysine,Cloramin,Embichin,Mechlorethamine Hydrochloride,Mechlorethamine Hydrochloride N-Oxide,Mechlorethamine N-Oxide,Methylchlorethamine,Mitomen,Mustargen,NSC-10107,NSC-762,Nitrogranulogen,Nitromin,Hydrochloride N-Oxide, Mechlorethamine,Hydrochloride, Mechlorethamine,Mechlorethamine Hydrochloride N Oxide,Mechlorethamine N Oxide,N-Oxide, Mechlorethamine Hydrochloride,N-Oxide, Nitrogen Mustard,NSC 10107,NSC 762,NSC10107,NSC762,Nitrogen Mustard N Oxide
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003579 Cytochrome Reductases Reductases, Cytochrome
D000077704 Tirapazamine A triazine derivative that introduces breaks into DNA strands in hypoxic cells, sensitizing tumor cells to the cytotoxic activity of other drugs and radiation. 3-Amino-1,2,4-benzotriazine-1,4-dioxide,NSC 130181,SR 4233,SR-4233,Tirazone,WIN 59075,WIN-59075,SR4233,WIN59075

Related Publications

I N White, and A Cahill, and A Davies, and P Carthew
April 1988, Biochemical pharmacology,
I N White, and A Cahill, and A Davies, and P Carthew
September 1991, Molecular pharmacology,
I N White, and A Cahill, and A Davies, and P Carthew
September 2003, Journal of the American Chemical Society,
I N White, and A Cahill, and A Davies, and P Carthew
March 2011, European journal of medicinal chemistry,
I N White, and A Cahill, and A Davies, and P Carthew
May 2007, Archiv der Pharmazie,
Copied contents to your clipboard!