Oxidation of pharmaceuticals during water treatment with chlorine dioxide. 2005

Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.

The potential of chlorine dioxide (ClO2) for the oxidation of pharmaceuticals during water treatment was assessed by determining second-order rate constants for the reaction with selected environmentally relevant pharmaceuticals. Out of 9 pharmaceuticals only the 4 following compounds showed an appreciable reactivity with ClO2 (in brackets apparent second-order rate constants at pH 7 and T = 20 degrees C): the sulfonamide antibiotic sulfamethoxazole (6.7 x 10(3) M(-1) s(-1)), the macrolide antibiotic roxithromycin (2.2 x 10(2) M(-1) s(-1)), the estrogen 17alpha-ethinylestradiol (approximately 2 x 10(5) M(-1) s(-1)), and the antiphlogistic diclofenac (1.05 x 10(4) M(-1) s(-1)). Experiments performed using natural water showed that ClO2 also reacted fast with other sulfonamides and macrolides, the natural hormones estrone and 17beta-estradiol as well as 3 pyrazolone derivatives (phenazone, propylphenazone, and dimethylaminophenazone). However, many compounds in the study were ClO2 refractive. Experiments with lake water and groundwater that were partly performed at microgram/L to nanogram/L levels proved that the rate constants determined in pure water could be applied to predict the oxidation of pharmaceuticals in natural waters. Compared to ozone, ClO2 reacted more slowly and with fewer compounds. However, it reacted faster with the investigated compounds than chlorine. Overall, the results indicate that ClO2 will only be effective to oxidize certain compound classes such as the investigated classes of sulfonamide and macrolide antibiotics, and estrogens.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010087 Oxides Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides. Oxide
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005618 Fresh Water Water containing no significant amounts of salts, such as water from RIVERS and LAKES. Freshwater,Fresh Waters,Freshwaters,Water, Fresh,Waters, Fresh
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D000983 Antipyrine An analgesic and antipyretic that has been given by mouth and as ear drops. Antipyrine is often used in testing the effects of other drugs or diseases on drug-metabolizing enzymes in the liver. (From Martindale, The Extra Pharmacopoeia, 30th ed, p29) Phenazone,Anodynin,Pyramidone
D014881 Water Supply Means or process of supplying water (as for a community) usually including reservoirs, tunnels, and pipelines and often the watershed from which the water is ultimately drawn. (Webster, 3d ed) Supplies, Water,Supply, Water,Water Supplies
D017606 Chlorine Compounds Inorganic compounds that contain chlorine as an integral part of the molecule. Chlorine Compounds, Inorganic,Compounds, Chlorine,Compounds, Inorganic Chlorine,Inorganic Chlorine Compounds

Related Publications

Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
November 1984, Bulletin of environmental contamination and toxicology,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
December 1963, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1. Abt. Medizinisch-hygienische Bakteriologie, Virusforschung und Parasitologie. Originale,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
January 1983, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
January 2004, Huan jing ke xue= Huanjing kexue,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
August 2022, Journal of hazardous materials,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
October 1979, Bulletin of environmental contamination and toxicology,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
January 2004, Journal of environmental sciences (China),
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
July 2020, Environmental science and pollution research international,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
August 2014, Journal of hazardous materials,
Marc M Huber, and Susanna Korhonen, and Thomas A Ternes, and Urs von Gunten
September 1946, American journal of public health and the nation's health,
Copied contents to your clipboard!