Clinical pharmacokinetics in veterinary medicine. 1992

J D Baggot
Irish Equine Centre, Johnstown, County Kildare.

Veterinary and human pharmacology differ principally in the range of species in which drugs are used and studied. In animals, as in humans, an understanding of the dose-effect relationship can be obtained by linking pharmacokinetic behaviour with pharmacodynamic information. Studies of different classes of drugs support the assumption that the range of therapeutic plasma concentrations in animals is generally the same as in humans. The requirement for species differences in dosage or administration rate (dose/dosage interval) may be attributed to variations in pharmacokinetic behaviour or pharmacodynamic activity, or both. When administering a drug orally, the bioavailability from a dosage form can vary widely. This is particularly the case between ruminant animals (cattle, sheep and goats), horses and carnivorous species (dogs and cats). Species variations in bioavailability can be avoided by parenteral administration. Formulation of parenteral preparations and location of intramuscular injection site can, at least in horses and cattle, influence bioavailability. Comparative pharmacokinetic studies help to explain differences in absorption and disposition processes that may underlie species variations in response to fixed dosages of a drug. Certain marker substances are useful in quantifying the activity of metabolic pathways or efficiency of excretion processes. Prediction of preslaughter withdrawal times in food-producing animals represents an application of pharmacokinetics in the field of drug residues. The drug residue profile can be obtained by combining fixed dose pharmacokinetic studies with measurement of drug concentrations in selected tissues and organs of the body. This approach offers an economical advantage in that fewer animals are required for residue studies. In domestic animals, as in humans, the disposition of most drugs can be interpreted in terms of a 2- (generally) or 3-compartment open model. Species variations in pharmacokinetic behaviour of a drug are usually attributed to differences in the rate of elimination rather than distribution and metabolism of the drug, although the principal metabolic pathway may differ. With certain notable exceptions, the herbivorous species (horses and ruminant animals) metabolise lipid-soluble drugs more rapidly than carnivorous species (dogs and cats). Humans metabolise drugs slowly in comparison with animals. Half-life values reflect this; insufficient data are available to base interspecies comparison on mean residence time. Intrinsic hepatic clearance of phenazone (antipyrine) [microsomal oxidation] in humans is approximately one-seventh of that in domestic animals.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D010599 Pharmacokinetics Dynamic and kinetic mechanisms of exogenous chemical DRUG LIBERATION; ABSORPTION; BIOLOGICAL TRANSPORT; TISSUE DISTRIBUTION; BIOTRANSFORMATION; elimination; and DRUG TOXICITY as a function of dosage, and rate of METABOLISM. LADMER, ADME and ADMET are abbreviations for liberation, absorption, distribution, metabolism, elimination, and toxicology. ADME,ADME-Tox,ADMET,Absorption, Distribution, Metabolism, Elimination, and Toxicology,Absorption, Distribution, Metabolism, and Elimination,Drug Kinetics,Kinetics, Drug,LADMER,Liberation, Absorption, Distribution, Metabolism, Elimination, and Response
D004333 Drug Administration Routes The various ways of administering a drug or other chemical to a site in a patient or animal from where the chemical is absorbed into the blood and delivered to the target tissue. Administration Routes, Drug,Administration Route, Drug,Drug Administration Route,Route, Drug Administration,Routes, Drug Administration
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014730 Veterinary Medicine The medical science concerned with the prevention, diagnosis, and treatment of diseases in animals. Medicine, Veterinary

Related Publications

J D Baggot
August 2020, Journal of the American Veterinary Medical Association,
J D Baggot
June 1985, The Canadian veterinary journal = La revue veterinaire canadienne,
J D Baggot
May 1976, DTW. Deutsche tierarztliche Wochenschrift,
J D Baggot
January 1987, Journal of veterinary internal medicine,
J D Baggot
May 1971, Journal of the American Veterinary Medical Association,
J D Baggot
December 1984, Southern medical journal,
J D Baggot
September 2013, The Veterinary clinics of North America. Small animal practice,
J D Baggot
December 1989, Journal of the South African Veterinary Association,
J D Baggot
April 1971, Journal of the American Veterinary Medical Association,
Copied contents to your clipboard!