Cyanobacterial metallothionein gene expressed in Escherichia coli. Metal-binding properties of the expressed protein. 1992

J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
Department of Biological Sciences, University of Durham, UK.

The recently isolated Synechococcus gene smtA encodes the only characterised prokaryotic protein designated to be a metallothionein (MT). To examine the metal-binding properties of its product the smtA gene was expressed in Escherichia coli as a carboxyterminal extension of glutathione-S-transferase. The pH of half dissociation of Zn, Cd and Cu ions from the expressed protein was determined to be 4.10, 3.50, 2.35, respectively, indicating a high affinity for these ions (in particular for Zn in comparison to mammalian MT). E. coli expressing this gene showed enhanced (ca. 3-fold) accumulation of Zn.

UI MeSH Term Description Entries
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae

Related Publications

J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
April 2005, Basic & clinical pharmacology & toxicology,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
December 2012, Biological trace element research,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
May 2012, Journal of cellular biochemistry,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
January 2022, Ecotoxicology (London, England),
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
June 1976, Proceedings of the National Academy of Sciences of the United States of America,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
May 1996, Research communications in molecular pathology and pharmacology,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
January 1999, Journal of microencapsulation,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
November 2002, Bioscience, biotechnology, and biochemistry,
J Shi, and W P Lindsay, and J W Huckle, and A P Morby, and N J Robinson
August 1984, Current genetics,
Copied contents to your clipboard!