Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder. 1992

G T Somogyi, and W C de Groat
Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261.

Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

UI MeSH Term Description Entries
D008297 Male Males
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009525 Niacin A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic Acid,3-Pyridinecarboxylic Acid,Enduracin,Induracin,Lithium Nicotinate,Niacin Aluminum Salt,Niacin Ammonium Salt,Niacin Calcium Salt,Niacin Cobalt (2+) Salt,Niacin Copper (2+) Salt,Niacin Hydrochloride,Niacin Iron (2+) Salt,Niacin Lithium Salt,Niacin Lithium Salt, Hemihydrate,Niacin Magnesium Salt,Niacin Manganese (2+) Salt,Niacin Potassium Salt,Niacin Sodium Salt,Niacin Tartrate,Niacin Tosylate,Niacin Zinc Salt,Nicamin,Nico-400,Nicobid,Nicocap,Nicolar,Nicotinate,Wampocap,3 Pyridinecarboxylic Acid,Aluminum Salt, Niacin,Hydrochloride, Niacin,Nico 400,Nico400,Nicotinate, Lithium,Potassium Salt, Niacin,Sodium Salt, Niacin,Tartrate, Niacin,Tosylate, Niacin
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat

Related Publications

G T Somogyi, and W C de Groat
August 1986, The Journal of urology,
G T Somogyi, and W C de Groat
January 1980, Experimental brain research,
G T Somogyi, and W C de Groat
November 1986, The Journal of pharmacology and experimental therapeutics,
G T Somogyi, and W C de Groat
February 1998, Journal of the autonomic nervous system,
G T Somogyi, and W C de Groat
July 1966, The Journal of pharmacy and pharmacology,
G T Somogyi, and W C de Groat
January 1984, Neurochemistry international,
G T Somogyi, and W C de Groat
October 1988, Brain research bulletin,
Copied contents to your clipboard!