Substituted isocoumarins as inhibitors of complement serine proteases. 1992

C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332.

Inhibition of complement proteins D, B, C2, C1s, C1r, I, and the catalytic fragments Bb and C2a by substituted isocoumarins was investigated. 3,4-Dichloroisocoumarin, a general serine protease inhibitor, inhibited factor D, C1r, and C1s moderately with second-order inhibition constants (kobs/[I]) of 40 to 190 M-1 s-1, but it did not inhibit C2, factor B, C2a, or Bb. The best inhibitor for factors D and B was 4-chloro-7-guanidino-3-methoxyisocoumarin with kobs/[I] values of 250 and 290 M-1 s-1, respectively. Most isocoumarins did not inhibit C2 or C2a; only 4-chloro-3-isothiureidoalkoxyisocoumarins were slightly inhibitory. 3-Alkoxy-4-chloro-7-guanidinoisocoumarins inhibited C1r and C1s moderately. The best inhibitor for C1r and C1s was 4-chloro-3-(3-isothiureidopropoxy)isocoumarin with kobs/[I] values of 6,600 and 130,000 M-1 s-1, respectively. Fifty amino acid or peptide thioesters containing Arg or other amino acids at the P1 site were tested as substrates of factor I, however none was hydrolyzed. Isocoumarins substituted with chloro and basic groups such as guanidino and isothiureidoalkoxy inhibited factor I activity with its natural substrate C3b, but kobs/[I] values were low. 4-Chloro-3-ethoxy-7-guanidinoisocoumarin inhibited activation of the alternative pathway and, to a lesser extent, of the classical pathway in serum. Several other substituted isocoumarins also inhibited cobra venom factor-initiated activation of the alternative pathway in serum.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003169 Complement Inactivator Proteins Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors. Complement Cytolysis Inhibiting Proteins,Complement Cytolysis Inhibitor Proteins,Complement Inactivating Proteins,Serum Complement Inactivators,Complement Inactivators, Serum,Inactivating Proteins, Complement,Inactivator Proteins, Complement,Inactivators, Serum Complement,Proteins, Complement Inactivating,Proteins, Complement Inactivator
D003374 Coumarins Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid. 1,2-Benzopyrone Derivatives,1,2-Benzopyrones,Coumarin Derivative,Coumarine,1,2-Benzo-Pyrones,Benzopyran-2-ones,Coumarin Derivatives,Coumarines,1,2 Benzo Pyrones,1,2 Benzopyrone Derivatives,1,2 Benzopyrones,Benzopyran 2 ones,Derivative, Coumarin,Derivatives, 1,2-Benzopyrone,Derivatives, Coumarin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015842 Serine Proteinase Inhibitors Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES. Serine Endopeptidase Inhibitor,Serine Endopeptidase Inhibitors,Serine Protease Inhibitor,Serine Protease Inhibitors,Serine Proteinase Antagonist,Serine Proteinase Antagonists,Serine Proteinase Inhibitor,Serine Proteinase Inhibitors, Endogenous,Serine Proteinase Inhibitors, Exogenous,Serine Protease Inhibitors, Endogenous,Serine Protease Inhibitors, Exogenous,Antagonist, Serine Proteinase,Endopeptidase Inhibitor, Serine,Inhibitor, Serine Endopeptidase,Inhibitor, Serine Protease,Inhibitor, Serine Proteinase,Protease Inhibitor, Serine,Proteinase Antagonist, Serine,Proteinase Inhibitor, Serine
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
January 2012, Bioorganic & medicinal chemistry,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
January 1993, Bioconjugate chemistry,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
April 1985, Biochemistry,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
October 1992, Journal of medicinal chemistry,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
October 2000, Biochemical Society transactions,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
April 2003, Biochemical pharmacology,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
January 2013, Current pharmaceutical design,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
February 2006, Molecular diversity,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
September 2009, Amino acids,
C M Kam, and T J Oglesby, and M K Pangburn, and J E Volanakis, and J C Powers
November 2003, Cellular and molecular life sciences : CMLS,
Copied contents to your clipboard!