Differential expression and comparative subcellular localization of estrogen receptor beta isoforms in virally transformed and normal cultured human lens epithelial cells. 2005

Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. pcammara@hsc.unt.edu

A number of variants of the wild-type (wt) estrogen receptor beta (ERbeta-1) coexist in a wide range of tissues. In the human these include, together with others, the expression of several isoforms (ERbeta-2-ERbeta-5) due to alternative splicing of exons encoding the carboxy terminus. In this study, we determined whether virally transformed cell cultures of human lens epithelial cells (HLE-B3) express both full length (or wt) and variant isoforms of ERbeta in comparison to normal secondary cultures of human lens epithelial cells (nHLE) and furthermore, identify the subcellular localization of the wtERbeta-1 and ERbeta isoform variants in HLE-B3 and nHLE cells, as well as from human breast adenocarcinoma cells (MCF-7) which provided a positive control. ERbeta isoform mRNA expression was evaluated by coupled RT-PCR. Subcellular localization of ERbeta isoforms was determined on formaldehyde-fixed, Saponin-permeabilized cells using conventional immunofluorescence techniques and affinity purified polyclonal antibodies specific for ERbeta-1 as well as to two of the truncated carboxy terminus isoforms (beta-2 and beta-5). Total RNA was extracted from HLE-B3 and nHLE cells and lens tissue, as well as from human breast adenocarcinoma cells (MCF-7) and subjected to RT-PCR using specific estrogen receptor primers intended to distinguish ERbeta-1-ERbeta-5 mRNA. The PCR products corresponded to wtERbeta-1 as well as to the isoform variants beta-2 and beta-5. The proportional distribution of wtERbeta-1, beta-2 and beta-5 PCR products differed between the normal lens epithelial cells and the SV-40 transformed lens epithelial cell line; the nHLE being similar to lens tissue with respect to relative expression of ERbeta isoform cDNAs. Confocal microscopy and immunofluorescence revealed ERbeta-2 was distributed throughout the cytosol and was associated with the nucleus of all cells examined, although sporadic immunostaining was observed with the nuclei of MCF-7. Prominent immunostaining of ERbeta-1 appeared in the mitochondria (along with weaker staining in the nucleus) of all cell types as authenticated by co-localization with Mitotrack-633. ERbeta-5 immunostaining was diffuse in the cytosol and also associated with the nuclei of all cell types. The differential subcellular partitioning of ERbeta-1 to the mitochondria and ERbeta-2 to the nucleus suggests a new aspect of regulation and function of the estrogen signalling system.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D047629 Estrogen Receptor beta One of the ESTROGEN RECEPTORS that has greater affinity for ISOFLAVONES than ESTROGEN RECEPTOR ALPHA does. There is great sequence homology with ER alpha in the DNA-binding domain but not in the ligand binding and hinge domains. ERbeta,ERbetacx,Estrogen Receptor 2,Estrogen Receptors beta,Receptor beta, Estrogen
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser

Related Publications

Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
April 2004, Experimental eye research,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
June 1998, International journal of oncology,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
October 2003, Oncogene,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
January 2003, Anticancer research,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
December 1998, Gastroenterology,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
January 2004, Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
January 2004, Neuroscience letters,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
May 1999, Proceedings of the National Academy of Sciences of the United States of America,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
March 1990, Cancer research,
Patrick R Cammarata, and James Flynn, and Srinivas Gottipati, and Shaoyou Chu, and Slobadan Dimitrijevich, and Mamoun Younes, and George Skliris, and Leigh C Murphy
May 2003, Journal of neurochemistry,
Copied contents to your clipboard!