Cloning, high yield overexpression, purification, and characterization of AlgH, a regulator of alginate biosynthesis in Pseudomonas aeruginosa. 2005

Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA.

The most common cause of mortality among cystic fibrosis sufferers is infection by antibiotic resistant strains of Pseudomonas aeruginosa. Means to control these strains continue to be an important goal. An integral component of the ability of many of these strains to defy antibiotic therapies is the protection afforded by the mucoexopolysaccharide alginate. Production of alginate by P. aeruginosa is tightly regulated at the transcriptional level. AlgH, a putative transcriptional regulator, is involved in regulating alginate biosynthesis as well as nucleoside diphosphate kinase activity and succinyl coenzyme A synthetase activity in P. aeruginosa. Sequence homologues are found in many bacterial species. Here, we describe a method for high level overexpression and high yield/high purity production of AlgH for biophysical and functional studies. The algH gene was cloned and AlgH was overexpressed in Escherichia coli using a commercially available vector with an inducible T7 promoter. We purified the recombinantly produced protein using a rapid classical purification scheme. The yield of purified protein, either isotopically labeled for NMR studies or unlabeled, is excellent (30-37 mg of purified protein per liter of minimal media culture), as is the purity (>95% pure). Analysis of the secondary structure using circular dichroism and NMR indicates that the protein is comprised of both beta-sheet and alpha-helical secondary structural elements. Heteronuclear NMR spectra indicate that AlgH is a monodisperse, folded globular protein. This rapid, high yield, and high purity method for AlgH production will permit further biophysical characterization of this protein including high resolution structural studies.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006603 Hexuronic Acids Term used to designate tetrahydroxy aldehydic acids obtained by oxidation of hexose sugars, i.e. glucuronic acid, galacturonic acid, etc. Historically, the name hexuronic acid was originally given to ascorbic acid. Hexouronic Acids,Acids, Hexouronic,Acids, Hexuronic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000464 Alginates Salts and esters of ALGINIC ACID that are used as HYDROGELS; DENTAL IMPRESSION MATERIALS, and as absorbent materials for surgical dressings (BANDAGES, HYDROCOLLOID). They are also used to manufacture MICROSPHERES and NANOPARTICLES for DIAGNOSTIC REAGENT KITS and DRUG DELIVERY SYSTEMS. Alginate,Alginic Acid, Barium Salt,Alginic Acid, Calcium Salt,Alginic Acid, Copper Salt,Alginic Acid, Potassium Salt,Alginic Acid, Sodium Salt,Alloid G,Barium Alginate,Calcium Alginate,Calginat,Copper Alginate,Kalrostat,Kalrostat 2,Kaltostat,Potassium Alginate,Sodium Alginate,Sodium Calcium Alginate,Vocoloid,Xantalgin,poly(Mannuronic Acid), Sodium Salt,Alginate, Barium,Alginate, Calcium,Alginate, Copper,Alginate, Potassium,Alginate, Sodium,Alginate, Sodium Calcium,Calcium Alginate, Sodium
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
February 2009, Applied and environmental microbiology,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
January 2016, International journal of molecular and cellular medicine,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
August 1994, Journal of bacteriology,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
September 2005, Journal of biomolecular NMR,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
February 2018, Protein expression and purification,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
June 2015, Proteins,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
June 1989, The Journal of biological chemistry,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
July 1984, Journal of bacteriology,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
March 2005, Protein expression and purification,
Ramona J Bieber Urbauer, and Joshua M Gilmore, and Sara E Rosasco, and Jessica M Hattle, and Aaron B Cowley, and Jeffrey L Urbauer
February 1999, Journal of bacteriology,
Copied contents to your clipboard!