Smoke inhalation enhances early alveolar leukocyte responsiveness to endotoxin. 2005

Mary Jo Wright, and Joseph T Murphy
Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-9158, USA.

BACKGROUND Pulmonary dysfunction after smoke inhalation and thermal injury is associated with excessive morbidity and mortality. The purpose of this study was to evaluate alveolar leukocyte function after thermal injury and smoke inhalation. METHODS Twenty-one patients with thermal injury only (n = 8); thermal injury and smoke inhalation injury (n = 8); and nonburned controls (n = 5) were assessed by means of bronchoscopically directed lavage (bronchoalveolar lavage [BAL]) on the first and fourth days postinjury. BAL-isolated pulmonary leukocytes were assessed for number, composition, viability, and production of tumor necrosis factor (TNF)alpha, interleukin (IL)-8, and IL-6 in response to 100 ng/mL of lipopolysaccharide (LPS) (mean +/- SEM; significance at p < 0.05). RESULTS Six of eight Smoke patients had gross evidence of lung injury. On day 1, Smoke and Burn BAL isolates yielded greater cell counts than Control (10.6 vs. 4.5 vs. 2.4 x 10(6)/mL). Smoke macrophages on day 1 produced more TNFalpha (1.2 vs. 0.2 ng/mL), IL-6 (8.0 vs. 1.9 ng/mL), and IL-8 (85 vs. 32 ng/mL) after LPS stimulation compared with respective unstimulated (0 ng/mL of LPS) day-1 Smoke cells. LPS-stimulated Burn cells on day 1 produced more IL-8 (150 vs. 62 ng/mL) but not TNFalpha (0.4 vs. 0.25 ng/mL) or IL-6 (1.8 vs. 0.69 ng/mL), when compared with respective unstimulated Burn cells. By day 4, LPS-stimulated Smoke and Burn cells produced significantly more TNFalpha (Smoke, 0.41 vs. 0.16 ng/mL; Burn, 0.87 vs. 0.51 ng/mL) and IL-6 (Smoke, 2.5 vs. 0.47 ng/mL; Burn, 4.1 vs. 1.47 ng/mL), but not IL-8 (Smoke, 51.1 vs. 51.1 ng/mL; Burn, 54.4 vs. 55.6 ng/mL), compared with respective unstimulated day-4 cells. CONCLUSIONS Smoke inhalation induces a massive influx of alveolar leukocytes that are primed for an early, enhanced LPS-activated cytokine response compared with alveolar leukocytes isolated after burn injury alone or normal controls.

UI MeSH Term Description Entries
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D001999 Bronchoscopy Endoscopic examination, therapy or surgery of the bronchi. Bronchoscopic Surgical Procedures,Surgical Procedures, Bronchoscopic,Bronchoscopic Surgery,Surgery, Bronchoscopic,Bronchoscopic Surgeries,Bronchoscopic Surgical Procedure,Bronchoscopies,Surgeries, Bronchoscopic,Surgical Procedure, Bronchoscopic
D002056 Burns Injuries to tissues caused by contact with heat, steam, chemicals (BURNS, CHEMICAL), electricity (BURNS, ELECTRIC), or the like. Burn
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

Mary Jo Wright, and Joseph T Murphy
March 1996, Burns : journal of the International Society for Burn Injuries,
Mary Jo Wright, and Joseph T Murphy
September 1985, Agents and actions,
Mary Jo Wright, and Joseph T Murphy
April 1995, Journal of cellular physiology,
Mary Jo Wright, and Joseph T Murphy
January 1994, The Journal of burn care & rehabilitation,
Mary Jo Wright, and Joseph T Murphy
October 1988, The Tohoku journal of experimental medicine,
Mary Jo Wright, and Joseph T Murphy
February 1984, JAMA,
Mary Jo Wright, and Joseph T Murphy
April 1986, Nihon Kyobu Shikkan Gakkai zasshi,
Mary Jo Wright, and Joseph T Murphy
February 1979, The American review of respiratory disease,
Mary Jo Wright, and Joseph T Murphy
October 1994, The American journal of pathology,
Mary Jo Wright, and Joseph T Murphy
August 1988, Surgery,
Copied contents to your clipboard!