Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). 2005

Youtao Song, and Daniel C Masison
Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0851, USA.

Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011328 Prions Small proteinaceous infectious particles which resist inactivation by procedures that modify NUCLEIC ACIDS and contain an abnormal isoform of a cellular protein which is a major and necessary component. The abnormal (scrapie) isoform is PrPSc (PRPSC PROTEINS) and the cellular isoform PrPC (PRPC PROTEINS). The primary amino acid sequence of the two isoforms is identical. Human diseases caused by prions include CREUTZFELDT-JAKOB SYNDROME; GERSTMANN-STRAUSSLER SYNDROME; and INSOMNIA, FATAL FAMILIAL. Mink Encephalopathy Virus,Prion,Encephalopathy Virus, Mink
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015003 Yeasts A general term for single-celled rounded fungi that reproduce by budding. Brewers' and bakers' yeasts are SACCHAROMYCES CEREVISIAE; therapeutic dried yeast is YEAST, DRIED. Yeast
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D018832 Molecular Chaperones A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures. Chaperones, Molecular,Chaperone, Molecular,Molecular Chaperone
D018840 HSP70 Heat-Shock Proteins A class of MOLECULAR CHAPERONES found in both prokaryotes and in several compartments of eukaryotic cells. These proteins can interact with polypeptides during a variety of assembly processes in such a way as to prevent the formation of nonfunctional structures. Heat-Shock Proteins 70,Heat Shock 70 kDa Protein,Heat-Shock Protein 70,HSP70 Heat Shock Proteins,Heat Shock Protein 70,Heat Shock Proteins 70,Heat-Shock Proteins, HSP70
D018841 HSP90 Heat-Shock Proteins A class of MOLECULAR CHAPERONES whose members act in the mechanism of SIGNAL TRANSDUCTION by STEROID RECEPTORS. Heat-Shock Proteins 90,HSP90 Heat Shock Proteins,Heat Shock Proteins 90,Heat-Shock Proteins, HSP90

Related Publications

Youtao Song, and Daniel C Masison
February 2019, The Journal of biological chemistry,
Youtao Song, and Daniel C Masison
July 2010, Molecular and cellular biology,
Youtao Song, and Daniel C Masison
September 2002, Biological chemistry,
Youtao Song, and Daniel C Masison
January 2023, Sub-cellular biochemistry,
Youtao Song, and Daniel C Masison
January 2020, Biochimica et biophysica acta. Proteins and proteomics,
Youtao Song, and Daniel C Masison
June 2020, Journal of neurochemistry,
Youtao Song, and Daniel C Masison
January 2015, Sub-cellular biochemistry,
Copied contents to your clipboard!