Human embryonic stem cells and their spontaneous differentiation. 2005

A H Sathananthan, and A Trounson
Monash Institute of Reproduction & Development and National Stem Cell Center Monash University, Melbourne, Australia. henry.sathananthan@med.monash.edu.au

Human embryonic stem cells (hESCs) usually grow in saucer-shaped colonies with thickened rims and can form spherical human embryoid bodies (hEBs) under non-adherent conditions. A problem associated with ES cell culture is the spontaneous differentiation of cells into a variety of cell types representing all three germ layers, which is evident in both hESC colonies and hEBs. This presentation deals with the precise origins of hESCs and their spontaneous differentiation in vitro. We have used advanced digital microscopy, including transmission electron microscopy (TEM) to define the fine structure of these cells. We present images of undifferentiated hESCs and their spontaneous differentiation into basic embryonic cell types such as nerve, muscle, connective tissue, epithelium, and digestive tract progenitors, representing all three primary germ layers: embryonic ectoderm, mesoderm and endoderm. It appears that hESCs work in concert and interact with one another, as in tissue formation of the embryo. Our fine structural observations agree mostly with those of the Thomson group. Digital microscopy of plastic sections and TEM are invaluable tools in the precise characterization of cells forming these tissues and a combined study with immunofluorescent markers is most desirable.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005855 Germ Layers The three primary germinal layers (ECTODERM; ENDODERM; and MESODERM) developed during GASTRULATION that provide tissues and body plan of a mature organism. They derive from two early layers, hypoblast and epiblast. Epiblast,Hypoblast,Epiblasts,Germ Layer,Hypoblasts,Layer, Germ,Layers, Germ
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D018874 Spheroids, Cellular Spherical, heterogeneous aggregates of proliferating, quiescent, and necrotic cells in culture that retain three-dimensional architecture and tissue-specific functions. The ability to form spheroids is a characteristic trait of CULTURED TUMOR CELLS derived from solid TUMORS. Cells from normal tissues can also form spheroids. They represent an in-vitro model for studies of the biology of both normal and malignant cells. (From Bjerkvig, Spheroid Culture in Cancer Research, 1992, p4) Multicellular Spheroids,Cellular Spheroid,Cellular Spheroids,Multicellular Spheroid,Spheroid, Cellular,Spheroid, Multicellular,Spheroids, Multicellular
D038081 Organogenesis Formation of differentiated cells and complicated tissue organization to provide specialized functions.
D039904 Pluripotent Stem Cells Cells that can give rise to cells of the three different GERM LAYERS. Stem Cells, Pluripotent,Pluripotent Stem Cell,Stem Cell, Pluripotent

Related Publications

A H Sathananthan, and A Trounson
March 2002, Journal of anatomy,
A H Sathananthan, and A Trounson
April 2009, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
A H Sathananthan, and A Trounson
January 2001, Izvestiia Akademii nauk. Seriia biologicheskaia,
A H Sathananthan, and A Trounson
April 2004, Human molecular genetics,
A H Sathananthan, and A Trounson
January 2009, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections,
A H Sathananthan, and A Trounson
March 2018, Tissue engineering. Part A,
A H Sathananthan, and A Trounson
April 2013, Biotechnology journal,
A H Sathananthan, and A Trounson
January 2004, Stem cells (Dayton, Ohio),
A H Sathananthan, and A Trounson
January 2018, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!