Nucleophile selectivity in the acyl transfer reaction of a designed enzyme. 2005

Sofia Hederos, and Lars Baltzer
IFM Chemistry, Division of Organic Chemistry, Linköping University SE-581 83, Linköping, Sweden.

The acyl transfer reaction of S-glutathionyl benzoate (GSB) is catalyzed by a rationally designed mutant of human glutathione transferase A1-1, A216H. The catalyzed reaction proceeds via the formation of an acyl intermediate and has been studied in the presence of nitrogen, oxygen, and sulfur nucleophiles to determine the selectivity with regards to nucleophile structure. Methanol was previously shown to react with the acyl intermediate and form the corresponding ester, methylbenzoate, under a significant rate enhancement. In the present investigation, the dependence on nucleophile structure and reactivity has been investigated. Ethane thiol gave rise to a larger rate enhancement in the enzyme-catalyzed reaction than ethanol, whereas ethylamine did not increase the reaction rate. The reactivities toward the acyl intermediate of primary and secondary alcohols with similar pKa values depended on the structure of the aliphatic chain, and 1-propanol was the most efficient alcohol. The reactivity of the oxygen nucleophiles was also found to depend strongly on pKa as 2,2,2-trifluoroethanol, with a pKa of 12.4, was the most efficient nucleophile of all that were tested. Saturation kinetics was observed in the case of 1-propanol, indicating a second binding site in the active site of A216H. The nucleophile selectivity of A216H provides the knowledge base needed for the further reengineering of A216H towards alternative substrate specificities.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Sofia Hederos, and Lars Baltzer
January 1991, Biomedica biochimica acta,
Sofia Hederos, and Lars Baltzer
March 2024, Nature communications,
Sofia Hederos, and Lars Baltzer
September 2002, Biochimica et biophysica acta,
Sofia Hederos, and Lars Baltzer
April 2007, Chembiochem : a European journal of chemical biology,
Sofia Hederos, and Lars Baltzer
January 1985, Biochimica et biophysica acta,
Sofia Hederos, and Lars Baltzer
June 1985, Biochemical and biophysical research communications,
Sofia Hederos, and Lars Baltzer
September 1988, Biotechnology and bioengineering,
Copied contents to your clipboard!