Glucuronidation of 3'-azido-3'-deoxythymidine in human liver microsomes: enzyme inhibition by drugs and steroid hormones. 1992

R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
Centre du Médicament, U.R.A. CNRS No. 597, Faculté des Sciences Pharmaceutiques et Biologiques, Nancy, France.

The molecular form of UDP-glucuronosyltransferase involved in the catalysis of 3'-azido-3'-deoxythymidine (AZT)-5'-O-glucuronide was characterized in human liver microsomes. The specific activity (1.3 nmol/min per mg protein) in transplantable liver was more than 2-times higher than in post-mortem fragments. Liver microsomes from patients suffering Crigler-Najjar syndrome, who are genetically deficient in bilirubin UDP-glucuronosyltransferase, could also glucuronidate AZT to a similar extent, thus indicating that this protein was not involved in that process. A genetically engineered V79 cell line stably expressing a cDNA which encodes a human isozyme active towards 1-naphthol was unable to glucuronidate AZT. Clinically used drugs, most of them being glucuronidated, were tested as potential inhibitors of the glucuronidation of AZT in human liver microsomes. The drugs chemically related to 2-phenylpropionic acid, naproxen and flurbiprofen, and the steroid compounds testosterone, estrone and ethynylestradiol strongly inhibited AZT glucuronidation. Codeine and morphine also decreased the reaction rate although to a lower extent. Except estrone which elicited a partial competitive inhibition, ethynylestradiol, flurbiprofen naproxen and testosterone could competitively inhibit AZT glucuronidation with an apparent Ki of 38, 50, 172 and 250 microM, respectively. The results suggest that these drugs were substrates of the same isozyme(s) involved in AZT glucuronidation. Probenecid was a weak inhibitor of the reaction (Ki 900 microM), only when non-disrupted microsomes were used. This drug may compete with the anion carrier system involved in the microsomal uptake of UDP-glucuronic acid.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009288 Naproxen An anti-inflammatory agent with analgesic and antipyretic properties. Both the acid and its sodium salt are used in the treatment of rheumatoid arthritis and other rheumatic or musculoskeletal disorders, dysmenorrhea, and acute gout. Aleve,Anaprox,Methoxypropiocin,Naprosin,Naprosyn,Naproxen Sodium,Proxen,Sodium Naproxenate,Synflex,Naproxenate, Sodium,Sodium, Naproxen
D010666 Phenylpropionates Derivatives of 3-phenylpropionic acid, including its salts and esters.
D011339 Probenecid The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. Benecid,Benemid,Benuryl,Pro-Cid,Probecid,Probenecid Weimer
D004970 Estrone An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women. Folliculin (Hormone),Estrone, (+-)-Isomer,Estrone, (8 alpha)-Isomer,Estrone, (9 beta)-Isomer,Estrovarin,Kestrone,Unigen,Wehgen
D004997 Ethinyl Estradiol A semisynthetic alkylated ESTRADIOL with a 17-alpha-ethinyl substitution. It has high estrogenic potency when administered orally, and is often used as the estrogenic component in ORAL CONTRACEPTIVES. 19-Norpregna-1,3,5(10)-trien-20-yne-3,17-diol, (17alpha)-,Ethynyl Estradiol,Estinyl,Ethinyl Estradiol Hemihydrate,Ethinyl Estradiol, (8 alpha)-Isomer,Ethinyl Estradiol, (8 alpha,17 alpha)-Isomer,Ethinyl Estradiol, (8 alpha,9 beta,13 alpha,14 beta)-Isomer,Ethinyl Estradiol, (9 beta,17 alpha)-Isomer,Ethinyl-Oestradiol Effik,Ethinylestradiol Jenapharm,Ethinyloestradiol,Lynoral,Microfollin,Microfollin Forte,Progynon C,Estradiol, Ethinyl,Estradiol, Ethynyl,Ethinyl Oestradiol Effik,Hemihydrate, Ethinyl Estradiol,Jenapharm, Ethinylestradiol
D005480 Flurbiprofen An anti-inflammatory analgesic and antipyretic of the phenylalkynoic acid series. It has been shown to reduce bone resorption in periodontal disease by inhibiting CARBONIC ANHYDRASE. 2-Fluoro-alpha-methyl-(1,1'-biphenyl)-4-acetic Acid,Ansaid,Apo-Flurbiprofen,BTS-18322,Cebutid,Dobrofen,E-7869,Flubiprofen,Flugalin,Flurbiprofen Sodium,Fluriproben,Froben,Froben SR,Neo Artrol,Novo-Flurprofen,Nu-Flurbiprofen,Ocufen,Ocuflur,Strefen,ratio-Flurbiprofen,Apo Flurbiprofen,BTS 18322,BTS18322,E 7869,E7869,Novo Flurprofen,Nu Flurbiprofen,ratio Flurbiprofen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
January 1993, Drug metabolism and disposition: the biological fate of chemicals,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
May 1989, Biochemical pharmacology,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
September 1990, Archives of biochemistry and biophysics,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
November 1992, Biochemical pharmacology,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
January 1992, Biochemical pharmacology,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
July 1991, Biochemical pharmacology,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
January 1992, Drug metabolism and disposition: the biological fate of chemicals,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
July 1998, Antimicrobial agents and chemotherapy,
R Herber, and J Magdalou, and M Haumont, and R Bidault, and H van Es, and G Siest
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!