Heterogeneity in the clastogenic response to X-rays in lymphocytes from ataxia-telangiectasia heterozygotes and controls. 1992

J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco 94143-0560.

A coded analysis of X-ray-induced chromatid aberrations in lymphocyte cultures from 45 control individuals and 19 ataxia-telangiectasia (A-T) heterozygotes was performed. The distribution of chromatid breaks induced in the late G2 portion of the cell cycle by 60 cGy of X-rays appeared bimodal in the study population. In six controls (13 percent) and in 12 of 19 (63 percent) A-T heterozygotes, the yields of X-ray-induced breaks observed were within the higher mode of the distribution. However, lymphocytes from A-T heterozygotes sensitive to the induction of chromatid breaks by 60 cGy did not contain increased numbers of aberrations following exposure to 20 cGy. The radio-resistant inhibition of DNA synthesis that occurs in A-T homozygotes was not observed in heterozygotes. Co-cultivation experiments showed an increased G2 delay in lymphocytes from an A-T heterozygote whose lymphocytes contained increased X-ray-induced chromatid breaks. The results show a significant association of A-T heterozygosity with G2 chromosomal sensitivity (P less than 0.001; Wilcoxon rank sum test). The measurement of X-ray-induced breaks, however, failed to identify 37 percent of A-T heterozygotes tested. The predicted prevalence of increased sensitivity to X-rays in controls is approximately three- to 30-fold greater than the estimated frequency of A-T heterozygotes in the general population. Therefore, although the increased sensitivity to X-ray-induced chromatid breaks appears to be associated with the A-T-gene, it is not a reliable indicator of A-T heterozygosity. Genetic or environmental factors other than the A-T gene also must be involved in the increased clastogenic response.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D002842 Chromatids Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromatid
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D005260 Female Females
D006580 Genetic Carrier Screening Identification of individuals who are heterozygous at a GENETIC LOCUS for a recessive PHENOTYPE. Carriers, Genetic, Detection,Genetic Carriers, Detection,Heterozygote Detection,Carrier Detection, Genetic,Detection, Genetic Carrier,Genetic Carrier Detection,Heterozygote Screening,Carrier Screening, Genetic,Detection, Heterozygote,Screening, Genetic Carrier,Screening, Heterozygote,Screenings, Genetic Carrier

Related Publications

J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
January 1980, Cytogenetics and cell genetics,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
November 1996, International journal of radiation biology,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
December 1977, Mutation research,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
May 1990, Cancer genetics and cytogenetics,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
September 1989, Human genetics,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
August 1985, Cancer research,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
July 2001, International journal of cancer,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
August 1989, Mutation research,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
January 1985, Cancer genetics and cytogenetics,
J K Wiencke, and D W Wara, and J B Little, and K T Kelsey
December 1998, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!