Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. 1992

T W Chow, and J D Hellums, and J L Moake, and M H Kroll
Biomedical Engineering Laboratory, Rice University, Houston, TX.

Platelets subjected to elevated levels of fluid shear stress in the absence of exogenous agonists will aggregate. Shear stress-induced aggregation requires von Willebrand factor (vWF) multimers, extracellular calcium (Ca2+), adenosine diphosphate (ADP), and platelet membrane glycoprotein (GP)Ib and GPIIb-IIIa. The sequence of interaction of vWF multimers with platelet surface receptors and the effect of these interactions on platelet activation have not been determined. To elucidate the mechanism of shear stress-induced platelet aggregation, suspensions of washed platelets were subjected to different levels of uniform shear stress (15 to 120 dyne/cm2) in an optically modified cone and plate viscometer. Cytoplasmic ionized calcium ([Ca2+]i) and aggregation of platelets were monitored simultaneously during the application of shear stress; [Ca2+]i was measured using indo-1 loaded platelets and aggregation was measured as changes in light transmission. Basal [Ca2+]i was approximately 60 to 100 nmol/L. An increase of [Ca2+]i (up to greater than 1,000 nmol/L) was accompanied by synchronous aggregation, and both responses were dependent on the shear force and the presence of vWF multimers. EGTA chelation of extracellular Ca2+ completely inhibited vWF-mediated [Ca2+]i and aggregation responses to shear stress. Aurin tricarboxylic acid, which blocks the GPIb recognition site on the vWF monomer, and 6D1, a monoclonal antibody to GPIb, also completely inhibited platelet responses to shear stress. The tetrapeptide RGDS and the monoclonal antibody 10E5, which inhibit vWF binding to GPIIb-IIIa, partially inhibited shear stress-induced [Ca2+]i and aggregation responses. The combination of creatine phosphate/creatine phosphokinase, which converts ADP to adenosine triphosphate and blocks the effect of ADP released from stimulated platelets, inhibited shear stress-induced platelet aggregation without affecting the increase of [Ca2+]i. Neither the [Ca2+]i nor aggregation response to shear stress was inhibited by blocking platelet cyclooxygenase metabolism with acetylsalicylic acid. These results indicate that GPIb and extracellular Ca2+ are absolutely required for vWF-mediated [Ca2+]i and aggregation responses to imposed shear stress, and that the interaction of vWF multimers with GPIIb-IIIa potentiates these responses. Shear stress-induced elevation of platelet [Ca2+]i, but not aggregation, is independent of the effects of release ADP, and both responses occur independently of platelet cyclooxygenase metabolism. These results suggest that shear stress induces the binding of vWF multimers to platelet GPIb and this vWF-GPIb interaction causes an increase of [Ca2+]i and platelet aggregation, both of which are potentiated by vWF binding to the platelet GPIIb-IIIa complex.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D001809 Blood Viscosity The internal resistance of the BLOOD to shear forces. The in vitro measure of whole blood viscosity is of limited clinical utility because it bears little relationship to the actual viscosity within the circulation, but an increase in the viscosity of circulating blood can contribute to morbidity in patients suffering from disorders such as SICKLE CELL ANEMIA and POLYCYTHEMIA. Blood Viscosities,Viscosities, Blood,Viscosity, Blood
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical

Related Publications

T W Chow, and J D Hellums, and J L Moake, and M H Kroll
April 1997, Biochemical and biophysical research communications,
T W Chow, and J D Hellums, and J L Moake, and M H Kroll
January 1992, Methods in enzymology,
T W Chow, and J D Hellums, and J L Moake, and M H Kroll
May 1988, Blood,
T W Chow, and J D Hellums, and J L Moake, and M H Kroll
April 1990, American journal of hematology,
T W Chow, and J D Hellums, and J L Moake, and M H Kroll
November 1985, Proceedings of the National Academy of Sciences of the United States of America,
T W Chow, and J D Hellums, and J L Moake, and M H Kroll
July 2004, Annals of biomedical engineering,
Copied contents to your clipboard!