| D009687 |
Nuclear Proteins |
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. |
Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar |
|
| D009701 |
Nucleoside-Diphosphate Kinase |
An enzyme that is found in mitochondria and in the soluble cytoplasm of cells. It catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside diphosphate, e.g., UDP, to form ADP and UTP. Many nucleoside diphosphates can act as acceptor, while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.6. |
Deoxynucleoside Diphosphate Kinases,GDP Kinase,Nucleoside Diphosphokinases,Nucleoside-Diphosphate Kinases,Diphosphate Kinases, Deoxynucleoside,Diphosphokinases, Nucleoside,Kinase, GDP,Kinase, Nucleoside-Diphosphate,Kinases, Deoxynucleoside Diphosphate,Kinases, Nucleoside-Diphosphate,Nucleoside Diphosphate Kinase,Nucleoside Diphosphate Kinases |
|
| D010940 |
Plant Proteins |
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. |
Plant Protein,Protein, Plant,Proteins, Plant |
|
| D002957 |
Citrus |
A plant genus of the family RUTACEAE. They bear the familiar citrus fruits including oranges, grapefruit, lemons, and limes. There are many hybrids which makes the nomenclature confusing. |
Citron Tree,Fruit, Citrus,Lemon Tree,Orange Tree, Bitter,Orange Tree, Mandarin,Orange Tree, Seville,Orange Tree, Sour,Pomelo Tree,Pummelo Tree,Tangerine Tree,Citrus Fruit,Citrus aurantium,Citrus bergamia,Citrus grandis,Citrus hystrix,Citrus limon,Citrus maxima,Citrus medica,Citrus reticulata,Kaffir Lime,Bitter Orange Tree,Bitter Orange Trees,Citron Trees,Citrus aurantiums,Citrus bergamias,Citrus grandi,Citrus hystrices,Citrus medicas,Citrus reticulatas,Lemon Trees,Lime, Kaffir,Mandarin Orange Tree,Mandarin Orange Trees,Orange Trees, Bitter,Orange Trees, Mandarin,Orange Trees, Seville,Orange Trees, Sour,Pomelo Trees,Pummelo Trees,Seville Orange Tree,Seville Orange Trees,Sour Orange Tree,Sour Orange Trees,Tangerine Trees,Tree, Bitter Orange,Tree, Citron,Tree, Lemon,Tree, Mandarin Orange,Tree, Pomelo,Tree, Pummelo,Tree, Seville Orange,Tree, Sour Orange,Tree, Tangerine,Trees, Bitter Orange,Trees, Citron,Trees, Lemon,Trees, Mandarin Orange,Trees, Pomelo,Trees, Pummelo,Trees, Seville Orange,Trees, Sour Orange,Trees, Tangerine,aurantium, Citrus,bergamia, Citrus,hystrices, Citrus,maxima, Citrus,medicas, Citrus,reticulata, Citrus |
|
| D003080 |
Cold Temperature |
An absence of warmth or heat or a temperature notably below an accustomed norm. |
Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold |
|
| D000064 |
Acclimatization |
Adaptation to a new environment or to a change in the old. |
Acclimation |
|
| D000591 |
Amino Acid Isomerases |
Enzymes that catalyze either the racemization or epimerization of chiral centers within amino acids or derivatives. EC 5.1.1. |
Amino Acid Racemase,Amino Acid Racemases,Acid Isomerases, Amino,Acid Racemase, Amino,Acid Racemases, Amino,Isomerases, Amino Acid,Racemase, Amino Acid,Racemases, Amino Acid |
|
| D001616 |
beta-Galactosidase |
A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. |
Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases |
|
| D012269 |
Ribosomal Proteins |
Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. |
Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|