Beta-lactam antibiotic resistance: a current structural perspective. 2005

Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
Department of Biochemistry and Molecular Biology, and the Center for Blood Research, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.

Bacterial resistance to beta-lactam antibiotics can be achieved by any of three strategies: the production of beta-lactam-hydrolyzing beta-lactamase enzymes, the utilization of beta-lactam-insensitive cell wall transpeptidases, and the active expulsion of beta-lactam molecules from Gram-negative cells by way of efflux pumps. In recent years, structural biology has contributed significantly to the understanding of these processes and should prove invaluable in the design of drugs to combat beta-lactam resistance in the future.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D046915 Penicillin-Binding Proteins Bacterial proteins that share the property of binding irreversibly to PENICILLINS and other ANTIBACTERIAL AGENTS derived from LACTAMS. The penicillin-binding proteins are primarily enzymes involved in CELL WALL biosynthesis including MURAMOYLPENTAPEPTIDE CARBOXYPEPTIDASE; PEPTIDE SYNTHASES; TRANSPEPTIDASES; and HEXOSYLTRANSFERASES. Penicillin-Binding Protein,Penicillin-Binding Protein 1,Penicillin-Binding Protein 1A,Penicillin-Binding Protein 1b,Penicillin-Binding Protein 2,Penicillin-Binding Protein 2a,Penicillin-Binding Protein 2b,Penicillin-Binding Protein 3,Penicillin-Binding Protein 4,Penicillin-Binding Protein 5,Penicillin-Binding Protein 6,Penicillin-Binding Protein 7,Penicillin-Binding Protein-2a,Peptidoglycan Synthetase,Penicillin Binding Protein,Penicillin Binding Protein 1,Penicillin Binding Protein 1A,Penicillin Binding Protein 1b,Penicillin Binding Protein 2,Penicillin Binding Protein 2a,Penicillin Binding Protein 2b,Penicillin Binding Protein 3,Penicillin Binding Protein 4,Penicillin Binding Protein 5,Penicillin Binding Protein 6,Penicillin Binding Protein 7,Penicillin Binding Proteins,Protein 1A, Penicillin-Binding,Protein 1b, Penicillin-Binding,Proteins, Penicillin-Binding,Synthetase, Peptidoglycan
D047090 beta-Lactams Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria. beta-Lactam,4-Thia-1-Azabicyclo(3.2.0)Heptanes,4-Thia-1-Azabicyclo(4.2.0)Octanes,beta Lactam,beta Lactams
D018440 beta-Lactam Resistance Nonsusceptibility of bacteria to the action of the beta-lactam antibiotics. Mechanisms responsible for beta-lactam resistance may be degradation of antibiotics by BETA-LACTAMASES, failure of antibiotics to penetrate, or low-affinity binding of antibiotics to targets. beta-Lactam Resistant,beta-Lactamase Resistance,beta-Lactamase Resistant,Resistance, beta-Lactamase,Resistant, beta-Lactamase,beta Lactam Resistance,beta Lactam Resistant,beta Lactamase Resistance,beta Lactamase Resistant

Related Publications

Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
August 1999, British journal of clinical pharmacology,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
October 1977, Antimicrobial agents and chemotherapy,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
June 2009, International journal of clinical practice,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
February 1985, The American journal of medicine,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
January 2014, The Cochrane database of systematic reviews,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
January 2006, The Cochrane database of systematic reviews,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
March 2005, Bioinformation,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
January 2019, Frontiers in molecular biosciences,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
January 2016, Jundishapur journal of microbiology,
Mark S Wilke, and Andrew L Lovering, and Natalie C J Strynadka
October 2003, Journal of molecular biology,
Copied contents to your clipboard!