Novel biomimetic polymersomes as polymer therapeutics for drug delivery. 2005

Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.

Novel amphiphilic diblock copolymers, cholesterol-end-capped poly(2-methacryloyloxyethyl phosphorylcholine) (CMPC), which have poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) as hydrophilic segment and cholesterol as hydrophobic segment, was specially designed as drug delivery systems. Fluorescence probe technique and transmission electron microscope (TEM) characterizations indicated that this novel amphiphilic copolymer formed micelles structure in water and the critical micelle concentration (CMC) was determined to be 1.57 x 10(-7) mol/l. A commercial obtained polymeric amphiphiles, Cholesterol end capped PEO (CPEO), which had a similar structure with CMPC, was used as a control in the cytotoxicity test. While CPEO showed obvious cytotoxicity, cytotoxicity of this novel amphiphiles was not observed as indicated by cell culture. Anti-cancer drug adriamycin (ADR) was incorporated into the micelles by oil-in-water method. The size of the drug-containing micelles was less than 200 nm, and the size distribution of the drug-containing micelles showed a narrow and monodisperse unimodal pattern. The release rate of ADR from the nanosphere was slow and the release continued over 7 days and the release rate decreased with the increase of molecular weights of the copolymer and the amount of the drug entrapped. These experimental results suggested that the nanoparticles prepared from CMPC block copolymers could be a good candidate for injectable drug delivery carrier.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008689 Methacrylates Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group. Methacrylate
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010767 Phosphorylcholine Calcium and magnesium salts used therapeutically in hepatobiliary dysfunction. Choline Chloride Dihydrogen Phosphate,Choline Phosphate Chloride,Phosphorylcholine Chloride,Choline Phosphate,Phosphocholine,Chloride, Choline Phosphate,Chloride, Phosphorylcholine,Phosphate Chloride, Choline,Phosphate, Choline
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell

Related Publications

Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
August 2002, Journal of controlled release : official journal of the Controlled Release Society,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
January 2020, Methods in molecular biology (Clifton, N.J.),
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
January 2011, Current pharmaceutical design,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
January 2012, Pharmaceutical research,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
March 2024, Polymers,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
September 2004, Advanced drug delivery reviews,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
February 2009, Macromolecular bioscience,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
January 2022, Current pharmaceutical design,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
January 2012, Langmuir : the ACS journal of surfaces and colloids,
Jian-Ping Xu, and Jian Ji, and Wei-Dong Chen, and Jia-Cong Shen
June 2017, Acta pharmaceutica (Zagreb, Croatia),
Copied contents to your clipboard!