Olfactory preference and Fos expression in the accessory olfactory system of male rats with bilateral lesions of the medial preoptic area/anterior hypothalamus. 2005

H A Hurtazo, and R G Paredes
Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Apartado Postal 1-1141 Querétaro 76001 Mexico.

In the present study we evaluated if a medial preoptic area/anterior hypothalamus lesion affects the olfactory preference toward soiled bedding from receptive females in comparison to bedding from anestrous females or clean bedding. In the second part of the study we evaluated the accessory olfactory system response to estrous bedding with Fos immunoreactivity to determine if the preoptic lesions modify the processing of sexually relevant olfactory cues. Before medial preoptic area/anterior hypothalamus lesions, male rats spent more time investigating estrous bedding as opposed to anestrous or clean bedding. After the lesion, subjects showed no preference between estrous and anestrous bedding; that is, males spent the same amount of time investigating both types of bedding. These two odors were investigated more than clean bedding. Increments in Fos immunoreactivity neurons were seen in structures of the accessory olfactory system after exposure to soiled estrous bedding [granular layer of the accessory olfactory bulb, anterior-dorsal medial amygdala, posterior-dorsal medial amygdala, bed nucleus of the stria terminalis]. These results suggest that bilateral destruction of the medial preoptic area/anterior hypothalamus modify male olfactory preference in such a way that subjects spend the same time smelling and investigating bedding from estrous and anestrous females. This change in olfactory preference is not associated with alterations in the processing of sexually relevant olfactory cues by the accessory olfactory system.

UI MeSH Term Description Entries
D008297 Male Males
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012726 Sexual Behavior, Animal Sexual activities of animals. Mating Behavior, Animal,Sex Behavior, Animal,Animal Mating Behavior,Animal Mating Behaviors,Animal Sex Behavior,Animal Sex Behaviors,Animal Sexual Behavior,Animal Sexual Behaviors,Mating Behaviors, Animal,Sex Behaviors, Animal,Sexual Behaviors, Animal
D012903 Smell The ability to detect scents or odors, such as the function of OLFACTORY RECEPTOR NEURONS. Olfaction,Sense of Smell,Smell Sense
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

H A Hurtazo, and R G Paredes
October 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H A Hurtazo, and R G Paredes
July 2003, Scandinavian journal of psychology,
Copied contents to your clipboard!