Reevaluation of the plasticity in the rat supraoptic nucleus after chronic dehydration using immunogold for oxytocin and vasopressin at the ultrastructural level. 1992

F Marzban, and C D Tweedle, and G I Hatton
Neuroscience Program, Michigan State University, East Lansing 48824-1117.

It has been shown that during physiological stimuli, such as dehydration, supraoptic nucleus (SON) neurons undergo profound morphological changes. However, little is known about how much each type of cell, oxytocin (OT) or vasopressin (VP), contributes to this plasticity during dehydration. Using postembedding immunogold cytochemistry for both OT and VP hormones at the electron microscopic level, we address this question. Rats were chronically dehydrated (given 2% saline to drink for 10 days) and their SON neurons were studied morphologically. The results were compared to control animals with free access to water. Both VP and OT somata showed an enlargement in size in dehydrated animals. Percentage of somasomatic/dendritic membrane contact increased significantly in both VP and OT neurons, with no significant changes in percentage of coverage of the cells by astrocytic membrane. Only the VP cells had a lesser amount of axosomatic membrane contact after dehydration, possibly due to an increase in cell size rather than a decrease in synaptic contact. Multiple synapses (MSs) (i.e., terminals that form more than one synapse with adjacent somata and or dendrites) occurred only between positively labeled cells and between negatively labeled cells, but not between positively and negatively labeled cells. The number of MSs per 100 microns OT somatic membrane or per 100 OT cells was significantly higher in dehydrated rats but was unchanged with regard to VP neurons. These findings indicate that both VP and OT neurons undergo morphological changes during chronic dehydration and, thus, that plasticity is not limited to OT cells as some earlier reports have suggested.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine

Related Publications

F Marzban, and C D Tweedle, and G I Hatton
January 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
F Marzban, and C D Tweedle, and G I Hatton
December 1975, The Journal of endocrinology,
F Marzban, and C D Tweedle, and G I Hatton
May 2010, Journal of neuroendocrinology,
F Marzban, and C D Tweedle, and G I Hatton
April 2003, The Journal of physiology,
F Marzban, and C D Tweedle, and G I Hatton
June 1998, Neuroscience,
F Marzban, and C D Tweedle, and G I Hatton
November 2008, Physiological genomics,
F Marzban, and C D Tweedle, and G I Hatton
February 2003, Journal of neuroendocrinology,
F Marzban, and C D Tweedle, and G I Hatton
January 1995, Brain research bulletin,
F Marzban, and C D Tweedle, and G I Hatton
January 1998, Advances in experimental medicine and biology,
Copied contents to your clipboard!