Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs. 2005

Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1769, USA.

Despite their small number, fast-spiking (FS) GABAergic interneurons play a critical role in controlling striatal output by mediating cortical feed-forward inhibition of striatal medium-sized spiny (MS) projection neurons. We have examined the functional development of FS interneurons and their cortical inputs, and the expression of three of their molecular markers, in the dorsolateral rat striatum between postnatal days (P)12--14 and 19--23, the time of major corticostriatal synaptogenesis. FS interneurons were visualized with infrared differential interference contrast (IR-DIC) optics and examined with current-clamp recording in the presence of the GABA(A) receptor antagonist bicuculline methiodide. FS interneurons displayed action potentials at relatively high frequencies in response to depolarizing current pulses by P12, but developmental changes occurred in action potential and afterhyperpolarization duration and amplitude and input resistance between P12--14 and P19--23, as well as an increase in maximum firing frequency in response to depolarizing current pulses. Maturation in electrophysiological properties was paralleled by increases in Kv 3.1 and parvalbumin mRNA expression, while GAD-67 mRNA levels remained constant. Furthermore, FS interneurons in the younger age group responded to stimulation of cortical afferents with excitatory postsynaptic potentials (EPSPs) of higher amplitudes and received significantly more spontaneous depolarizing inputs than did MS neurons. Thus, FS interneurons are under frequent and continuous cortical influence by the end of the 2nd postnatal week, a time when corticostriatal synapses are sparse, suggesting that they may provide a major inhibitory influence in the striatum during the period of intense developmental maturation.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females

Related Publications

Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
January 2011, Frontiers in systems neuroscience,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
July 2023, Neuropharmacology,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
December 2019, Journal of neuroscience research,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
September 2019, Journal of neurophysiology,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
July 2012, Neurobiology of disease,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
March 2007, The European journal of neuroscience,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
April 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
May 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
November 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Joshua L Plotkin, and Nanping Wu, and Marie-Françoise Chesselet, and Michael S Levine
August 2014, Science (New York, N.Y.),
Copied contents to your clipboard!