Polypeptide subunits of dynein 1 from sea urchin sperm flagella. 1979

C W Bell, and E Fronk, and I R Gibbons

A high-resolution sodium dodecyl sulfate polyacrylamide gel electrophoresis system has been used to show the presence, in both whole sperm and isolated flagellar axonemes, of eight polypeptides migrating in the 300,000--350,000 molecular weight range characteristic of the heavy chains of dynein ATPase. Previously, only five such chains have been discernible. Extraction of isolated axonemes for 10 min at 4 degrees C with a solution containing 0.6 M NaCl, ph 7, releases a mixture of particles that separate, in sucrose density gradient centrifugation, into a major peak, dynein 1 ATPase, sedimenting at 21S and a minor peak at 12--14S. The polypeptide compositions of these two peaks are different. The dynein 1 peak, which contains most of the protein on the gradient, contains approximately equal quantities of two closely migrating heavy chains, with a small amount of a third, more slowly migrating chain; no other heavy chains appear in this peak. Two groups of smaller polypeptides (three intermediate chains, within the apparent molecular weight range 76,000--122,000 and four newly discovered light chains, within the apparent molecular weight range 14,000--24,000) cosediment with the 21S peak. The heavy chain composition of the 12--14S peak is more complex, all eight heavy chains occurring approximately the same ratios as occur in intact axonemes.

UI MeSH Term Description Entries
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

C W Bell, and E Fronk, and I R Gibbons
April 1977, The Journal of cell biology,
C W Bell, and E Fronk, and I R Gibbons
January 1979, The Journal of biological chemistry,
C W Bell, and E Fronk, and I R Gibbons
September 1985, Journal of biochemistry,
C W Bell, and E Fronk, and I R Gibbons
September 1976, The Journal of biological chemistry,
C W Bell, and E Fronk, and I R Gibbons
January 1982, The Journal of biological chemistry,
C W Bell, and E Fronk, and I R Gibbons
August 1972, The Journal of cell biology,
C W Bell, and E Fronk, and I R Gibbons
February 1990, The Journal of biological chemistry,
C W Bell, and E Fronk, and I R Gibbons
February 1980, Journal of cell science,
C W Bell, and E Fronk, and I R Gibbons
February 1978, The Journal of cell biology,
C W Bell, and E Fronk, and I R Gibbons
January 1982, The Journal of biological chemistry,
Copied contents to your clipboard!