Endogenous nitrosyl factors may inhibit the desensitization of 5-HT3 receptors on vagal cardiopulmonary afferents. 2005

Joy A Owen, and James N Bates, and Stephen J Lewis
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, 30602-7389, USA.

The pronounced tachyphylaxis to the Bezold-Jarisch reflex (BJR) responses elicited by systemic injections of the 5-HT(3) receptor (5-HT(3)R) agonists such as phenylbiguanide (PBG) may involve desensitization and/or reduced rate of resensitization of 5-HT(3)Rs on vagal cardiopulmonary afferents. The presence of nitric oxide synthase (NOS) in vagal afferents raises the possibility that endogenous nitrosyl factors regulate the status of 5-HT(3)Rs in these afferents. Accordingly, the aim of this study was to determine whether the inhibition of NOS alters the development of tachyphylaxis to the BJR responses elicited by PBG in conscious rats. The first injection of PBG (100 microg/kg, i.v.) elicited robust reductions in heart rate (HR), diastolic arterial blood pressure (BP(D)), and cardiac output (CO) but minor changes in total peripheral resistance in saline-treated rats. Subsequent injections elicited progressively smaller responses such that the sixth injections elicited minor responses only. The first injection of PBG (100 microg/kg, i.v.) in rats treated with the NOS inhibitor, L-NAME (25 micromol/kg, i.v.) elicited similar reductions in HR, BP(D), and CO as in saline-treated rats. However, the rate of development of tachyphylaxis to PBG was markedly faster in the L-NAME-treated rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly attenuated after the development of tachyphylaxis to PBG in saline- and in L-NAME-treated rats whereas the BJR responses elicited by the S-nitrosothiol, L-S-nitrosocysteine (5 micromol/kg, i.v.), were not attenuated in either group. These findings suggest that tachyphylaxis to PBG was not due to the loss of central or efferent processing of the BJR. Taken together, these findings suggest NOS exists in vagal cardiopulmonary afferents mediating the BJR and that nitrosyl factors influence 5-HT(3)R function.

UI MeSH Term Description Entries
D008297 Male Males
D009589 Nitrogen Oxides Inorganic oxides that contain nitrogen. Nitrogen Oxide,Oxide, Nitrogen,Oxides, Nitrogen
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Joy A Owen, and James N Bates, and Stephen J Lewis
September 1979, The American journal of physiology,
Joy A Owen, and James N Bates, and Stephen J Lewis
November 1993, European journal of pharmacology,
Joy A Owen, and James N Bates, and Stephen J Lewis
January 2015, Frontiers in neuroscience,
Joy A Owen, and James N Bates, and Stephen J Lewis
February 2005, Pain,
Joy A Owen, and James N Bates, and Stephen J Lewis
January 2006, Current pharmaceutical design,
Joy A Owen, and James N Bates, and Stephen J Lewis
January 1990, Medicinal research reviews,
Joy A Owen, and James N Bates, and Stephen J Lewis
January 1990, Annals of the New York Academy of Sciences,
Joy A Owen, and James N Bates, and Stephen J Lewis
February 2004, Current drug targets. CNS and neurological disorders,
Joy A Owen, and James N Bates, and Stephen J Lewis
January 1996, Behavioural brain research,
Copied contents to your clipboard!