Activation of insulin receptor signaling by a single amino acid substitution in the transmembrane domain. 1992

N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
Department of Pediatrics, Emory University, Atlanta, Georgia 30322.

The insulin receptor is a ligand-activated tyrosine kinase composed of two alpha and two beta subunits. A single transmembrane domain composed of 23 hydrophobic residues is contained in each beta subunit. We examined the role of the transmembrane domain in regulating insulin receptor signaling by inserting a negatively charged amino acid (Asp) for Val938 (V938D). Chinese hamster ovary (CHO) cells were stably transfected with a plasmid containing both the neomycin-resistance gene and either the wild-type or the mutant (V938D) insulin receptor cDNA. Insulin binding increased similarly in CHO cells stably transfected with the wild-type and the V938D-mutant insulin receptor cDNA. Insulin stimulated glucose transport and cell growth in cells expressing the normal insulin receptor. By contrast, in the absence of insulin, glucose transport and cell growth in CHO-V938D cells were as high as in insulin-stimulated control cells and no longer responsive to insulin stimulation. Phosphorylation of the beta subunit of the insulin receptor was also increased in CHO-V938D cells not exposed to insulin. These results support an essential role of the transmembrane domain of the insulin receptor in the transduction of insulin signaling.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
June 1992, The Journal of biological chemistry,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
July 2014, The Journal of biological chemistry,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
June 1999, The EMBO journal,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
June 2009, Cell cycle (Georgetown, Tex.),
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
August 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
October 1998, European journal of endocrinology,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
March 2008, The Journal of pharmacology and experimental therapeutics,
N Longo, and R C Shuster, and L D Griffin, and S D Langley, and L J Elsas
March 1994, Biochemistry,
Copied contents to your clipboard!