Internalization of the human insulin receptor. The insulin-independent pathway. 1992

J P Paccaud, and K Siddle, and J L Carpentier
Department of Morphology, University of Geneva, Switzerland.

Internalization of the human insulin receptor requires the activation by insulin of the intrinsic kinase of the receptor. However, even in the absence of kinase activation, insulin receptors slowly enter the cells. In the present study, we addressed the question of this insulin-independent pathway of internalization. To that end, we traced insulin receptor internalization with a monoclonal antibody (mAb 83-14) directed against the alpha-subunit of the human insulin receptor. Internalization of this antibody was followed in Chinese hamster ovary (CHO) cells transfected with either normal (CHO.HIRC2) or kinase-deficient (CHO.A1018) human insulin receptors. The internalization rate of 125I-mAb 83-14 was comparable in CHO cells expressing kinase-active or kinase-inactive receptors and was similar to that observed for 125I-insulin in CHO.A1018 cells. Moreover, in CHO.HIRC2 cells, the internalization of 125I-mAb 83-14 was identical with that of its 125I-Fab fragments. Thus, mAb 83-14 represents an appropriate tool to study the constitutive internalization of the insulin receptor. Internalization of insulin receptors tagged with 125I-mAb 83-14 was unaffected by cytochalasin B, which excluded a macropinocytotic process. By contrast, internalization was sensitive to hypertonia, which abrogates clathrin-coated pits-mediated endocytosis. The implication of clathrin-coated pits in this internalization process was directly demonstrated by quantitative electron microscopic autoradiography, which showed that 125I-mAb 83-14 present on the nonvillous domain of the cell surface preferentially associate with clathrin-coated pits at all time points.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D003034 Coated Pits, Cell-Membrane Specialized regions of the cell membrane composed of pits coated with a bristle covering made of the protein CLATHRIN. These pits are the entry route for macromolecules bound by cell surface receptors. The pits are then internalized into the cytoplasm to form the COATED VESICLES. Bristle-Coated Pits,Cell-Membrane Coated Pits,Bristle Coated Pits,Bristle-Coated Pit,Cell Membrane Coated Pits,Cell-Membrane Coated Pit,Coated Pit, Cell-Membrane,Coated Pits, Cell Membrane,Pit, Bristle-Coated,Pit, Cell-Membrane Coated,Pits, Bristle-Coated,Pits, Cell-Membrane Coated
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

J P Paccaud, and K Siddle, and J L Carpentier
January 1987, The Biochemical journal,
J P Paccaud, and K Siddle, and J L Carpentier
May 2014, Acta pharmacologica Sinica,
J P Paccaud, and K Siddle, and J L Carpentier
August 1992, The Journal of cell biology,
J P Paccaud, and K Siddle, and J L Carpentier
August 2007, Cell biology international,
J P Paccaud, and K Siddle, and J L Carpentier
January 1992, Hormone research,
J P Paccaud, and K Siddle, and J L Carpentier
May 1998, Molecular and cellular biochemistry,
J P Paccaud, and K Siddle, and J L Carpentier
December 1985, Biochemical and biophysical research communications,
Copied contents to your clipboard!