Effect of cigarette smoke extract on the role of protein kinase C in the proliferation of passively sensitized human airway smooth muscle cells. 2005

Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
Institute of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

To investigate the effect of cigarette smoke extract (CSE) on the role of protein kinase C (PKC) in the proliferation of passively sensitized human airway smooth muscle cells (HASMCs). After synchronization of cultured HASMCs, they were divided into a group A and Group B. The group A was treated with normal human serum and served as controls and the group B was treated with the serum of asthma patients. The group A was further divided into group of A1, A2 and A3 and the group B was sub-divided into the group of B1, B2, B3, B4 and B5. No other agents were added to the group A1 and B1. The cells of group A2 and B2 were stimulated with 5% CSE for 24 h. HASMCs from group A3 and B3 were treated with PKC agonist PMA (10 nmol/L) and CSE (5%) for 24 h. PKC inhibitor Ro-31-8220 (5 micromol/L) was added to the HASMCs of group B4 for 24 h. The cells from group B5 were stimulated with Ro-31-8220 (5 micromol/L) and CSE (5 %) for 24 h. The proliferation of HASMCs isolated from group A and B was examined by cell cycle analysis, MTT colorimetric assay and 3H-TdR incorporation test. The expression of PKC-a in each group was observed by Western blotting and RT-PCR, respectively. The results showed that the percentage of S phase, absorbance (A) value, the rate of 3H-TdR incorporation, the ratios of A value of PKC-alpha mRNA and the A value of PKC-alpha protein in HASMCs from group B1, B2 and B3 were significantly increased compared to those of group A1, A2 and A3 correspondingly and respectively (P< 0.01). The proliferation of HASMCs of group A2 and B2 stimulated with CSE and group A3 and B3 stimulated with CSE and PMA were also significantly enhanced when group A1, A2 and A3 and group B1, B2 and B3 compared to each other (P<0.05, P<0.01, respectively). The percentage of S phase, absorbency (A) value, 3H-TdR incorporation rate, the ratios of A value of PKC-alpha mRNA and the A value of PKC-alpha protein in HASMCs from group B4 treated with Ro-31-8220 and group B5 treated with CSE and Ro-31-8220 were significantly decreased as compared to those of group B1 and B2 correspondingly and respectively (P<0.05, P<0.01). It was concluded that CSE can enhance the passively sensitized HASMC proliferation and the expression of PKC alpha. PKC and its alpha subtype may contribute to this process. Our results suggest cigarette may play an important role in ASMCs proliferation of asthma through PKC signal pathway.

UI MeSH Term Description Entries
D008297 Male Males
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001249 Asthma A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL). Asthma, Bronchial,Bronchial Asthma,Asthmas

Related Publications

Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
January 2004, Chinese medical journal,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
August 2011, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
July 2010, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
September 2007, Chinese medical journal,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
September 2014, The European respiratory journal,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
June 1995, The American journal of physiology,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
December 2004, Zhonghua nei ke za zhi,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
April 2017, Experimental and therapeutic medicine,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
December 2010, Chinese medical journal,
Junling Lin, and Yongjian Xu, and Zhenxiang Zhang, and Wang Ni, and Shixin Chen
August 2014, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!